Distributed Consensus Control for a Network of Incommensurate Fractional-Order Systems
This letter presents a distributed solution for consensus control of a network of single-integrator incommensurate fractional-order systems with nonlinear and uncertain dynamics. To consider a broader class of fractional-order systems, compared to existing results, the fractional derivative orders o...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2019-04, Vol.3 (2), p.481-486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 2 |
container_start_page | 481 |
container_title | IEEE control systems letters |
container_volume | 3 |
creator | Shahvali, Milad Naghibi-Sistani, Mohammad-Bagher Modares, Hamidreza |
description | This letter presents a distributed solution for consensus control of a network of single-integrator incommensurate fractional-order systems with nonlinear and uncertain dynamics. To consider a broader class of fractional-order systems, compared to existing results, the fractional derivative orders of agents' dynamics are assumed non-identical, which makes the distributed control design more challenging. To cope with non-identical fractional derivative orders, the Mittag-Leffler function method is adopted to develop a novel distributed control scheme that guarantees consensus under mild assumptions. To deal with agents' dynamic uncertainties, the proposed approach is integrated with adaptive neural networks to make the distributed tracking errors for all follower agents converge to a small neighborhood of origin. A numerical example is provided to demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1109/LCSYS.2019.2903227 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2019_2903227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8660435</ieee_id><sourcerecordid>10_1109_LCSYS_2019_2903227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-780aef5b08fbdcc91d64e3fb1df908ef246b4b36718cc506c220c352a6500b8e3</originalsourceid><addsrcrecordid>eNpNkNFKwzAYhYMoOOZeQG_yAp1_kjZNL6U6NxjuYip4VZL0D1TXRpIM2dtr3RCvzrk437n4CLlmMGcMqtt1vX3bzjmwas4rEJyXZ2TC87LIWF7I83_9ksxifAcApngJvJqQ1_suptCZfcKW1n6IOMR9HFsKfkedD1TTJ0xfPnxQ7-hqsL7vx1HQCekiaJs6P-hdtgktBro9xIR9vCIXTu8izk45JS-Lh-d6ma03j6v6bp1ZLsuUlQo0usKAcqa1tmKtzFE4w1pXgULHc2lyI2TJlLUFSMs5WFFwLQsAo1BMCT_-2uBjDOiaz9D1OhwaBs0op_mV04xympOcH-jmCHWI-AcoKSEXhfgGL7xiLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed Consensus Control for a Network of Incommensurate Fractional-Order Systems</title><source>IEEE/IET Electronic Library</source><creator>Shahvali, Milad ; Naghibi-Sistani, Mohammad-Bagher ; Modares, Hamidreza</creator><creatorcontrib>Shahvali, Milad ; Naghibi-Sistani, Mohammad-Bagher ; Modares, Hamidreza</creatorcontrib><description>This letter presents a distributed solution for consensus control of a network of single-integrator incommensurate fractional-order systems with nonlinear and uncertain dynamics. To consider a broader class of fractional-order systems, compared to existing results, the fractional derivative orders of agents' dynamics are assumed non-identical, which makes the distributed control design more challenging. To cope with non-identical fractional derivative orders, the Mittag-Leffler function method is adopted to develop a novel distributed control scheme that guarantees consensus under mild assumptions. To deal with agents' dynamic uncertainties, the proposed approach is integrated with adaptive neural networks to make the distributed tracking errors for all follower agents converge to a small neighborhood of origin. A numerical example is provided to demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2019.2903227</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Control design ; Decentralized control ; distributed control ; incommensurate fractional-order systems ; Laplace equations ; Multi-agent systems ; Stability analysis ; Synchronization ; Uncertainty ; unknown nonlinearities</subject><ispartof>IEEE control systems letters, 2019-04, Vol.3 (2), p.481-486</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-780aef5b08fbdcc91d64e3fb1df908ef246b4b36718cc506c220c352a6500b8e3</citedby><cites>FETCH-LOGICAL-c267t-780aef5b08fbdcc91d64e3fb1df908ef246b4b36718cc506c220c352a6500b8e3</cites><orcidid>0000-0003-0800-5140 ; 0000-0002-1460-5161 ; 0000-0003-1414-8199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8660435$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8660435$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shahvali, Milad</creatorcontrib><creatorcontrib>Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><creatorcontrib>Modares, Hamidreza</creatorcontrib><title>Distributed Consensus Control for a Network of Incommensurate Fractional-Order Systems</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>This letter presents a distributed solution for consensus control of a network of single-integrator incommensurate fractional-order systems with nonlinear and uncertain dynamics. To consider a broader class of fractional-order systems, compared to existing results, the fractional derivative orders of agents' dynamics are assumed non-identical, which makes the distributed control design more challenging. To cope with non-identical fractional derivative orders, the Mittag-Leffler function method is adopted to develop a novel distributed control scheme that guarantees consensus under mild assumptions. To deal with agents' dynamic uncertainties, the proposed approach is integrated with adaptive neural networks to make the distributed tracking errors for all follower agents converge to a small neighborhood of origin. A numerical example is provided to demonstrate the effectiveness of the proposed method.</description><subject>Artificial neural networks</subject><subject>Control design</subject><subject>Decentralized control</subject><subject>distributed control</subject><subject>incommensurate fractional-order systems</subject><subject>Laplace equations</subject><subject>Multi-agent systems</subject><subject>Stability analysis</subject><subject>Synchronization</subject><subject>Uncertainty</subject><subject>unknown nonlinearities</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFKwzAYhYMoOOZeQG_yAp1_kjZNL6U6NxjuYip4VZL0D1TXRpIM2dtr3RCvzrk437n4CLlmMGcMqtt1vX3bzjmwas4rEJyXZ2TC87LIWF7I83_9ksxifAcApngJvJqQ1_suptCZfcKW1n6IOMR9HFsKfkedD1TTJ0xfPnxQ7-hqsL7vx1HQCekiaJs6P-hdtgktBro9xIR9vCIXTu8izk45JS-Lh-d6ma03j6v6bp1ZLsuUlQo0usKAcqa1tmKtzFE4w1pXgULHc2lyI2TJlLUFSMs5WFFwLQsAo1BMCT_-2uBjDOiaz9D1OhwaBs0op_mV04xympOcH-jmCHWI-AcoKSEXhfgGL7xiLw</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Shahvali, Milad</creator><creator>Naghibi-Sistani, Mohammad-Bagher</creator><creator>Modares, Hamidreza</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0800-5140</orcidid><orcidid>https://orcid.org/0000-0002-1460-5161</orcidid><orcidid>https://orcid.org/0000-0003-1414-8199</orcidid></search><sort><creationdate>201904</creationdate><title>Distributed Consensus Control for a Network of Incommensurate Fractional-Order Systems</title><author>Shahvali, Milad ; Naghibi-Sistani, Mohammad-Bagher ; Modares, Hamidreza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-780aef5b08fbdcc91d64e3fb1df908ef246b4b36718cc506c220c352a6500b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Control design</topic><topic>Decentralized control</topic><topic>distributed control</topic><topic>incommensurate fractional-order systems</topic><topic>Laplace equations</topic><topic>Multi-agent systems</topic><topic>Stability analysis</topic><topic>Synchronization</topic><topic>Uncertainty</topic><topic>unknown nonlinearities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahvali, Milad</creatorcontrib><creatorcontrib>Naghibi-Sistani, Mohammad-Bagher</creatorcontrib><creatorcontrib>Modares, Hamidreza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shahvali, Milad</au><au>Naghibi-Sistani, Mohammad-Bagher</au><au>Modares, Hamidreza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Consensus Control for a Network of Incommensurate Fractional-Order Systems</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2019-04</date><risdate>2019</risdate><volume>3</volume><issue>2</issue><spage>481</spage><epage>486</epage><pages>481-486</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>This letter presents a distributed solution for consensus control of a network of single-integrator incommensurate fractional-order systems with nonlinear and uncertain dynamics. To consider a broader class of fractional-order systems, compared to existing results, the fractional derivative orders of agents' dynamics are assumed non-identical, which makes the distributed control design more challenging. To cope with non-identical fractional derivative orders, the Mittag-Leffler function method is adopted to develop a novel distributed control scheme that guarantees consensus under mild assumptions. To deal with agents' dynamic uncertainties, the proposed approach is integrated with adaptive neural networks to make the distributed tracking errors for all follower agents converge to a small neighborhood of origin. A numerical example is provided to demonstrate the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2019.2903227</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0800-5140</orcidid><orcidid>https://orcid.org/0000-0002-1460-5161</orcidid><orcidid>https://orcid.org/0000-0003-1414-8199</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2019-04, Vol.3 (2), p.481-486 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCSYS_2019_2903227 |
source | IEEE/IET Electronic Library |
subjects | Artificial neural networks Control design Decentralized control distributed control incommensurate fractional-order systems Laplace equations Multi-agent systems Stability analysis Synchronization Uncertainty unknown nonlinearities |
title | Distributed Consensus Control for a Network of Incommensurate Fractional-Order Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Consensus%20Control%20for%20a%20Network%20of%20Incommensurate%20Fractional-Order%20Systems&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Shahvali,%20Milad&rft.date=2019-04&rft.volume=3&rft.issue=2&rft.spage=481&rft.epage=486&rft.pages=481-486&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2019.2903227&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2019_2903227%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8660435&rfr_iscdi=true |