Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems

Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2018-07, Vol.2 (3), p.363-368
Hauptverfasser: Mieth, Robert, Dvorkin, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 3
container_start_page 363
container_title IEEE control systems letters
container_volume 2
creator Mieth, Robert
Dvorkin, Yury
description Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results.
doi_str_mv 10.1109/LCSYS.2018.2836870
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2018_2836870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359186</ieee_id><sourcerecordid>10_1109_LCSYS_2018_2836870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</originalsourceid><addsrcrecordid>eNpVkNFKwzAUhoMoOOZeQG_yAp3nnDRpeimbc0Jh4vTCq5KmKVS6dSSZY2_v5obo1X8u_u_w8zF2izBGhPy-mCw_lmMC1GPSQukMLtiA0kwmmEp1-ee-ZqMQPgEOVcqA8gFbTE00ydS3X27Np22Ivq22se3Xpuv2_LWvtiHyxSa2K9Pxl37nPJ91_Y43vf9X58t9iG4VbthVY7rgRuccsvfZ49tknhSLp-fJQ5FYUllMSCGmIssViDp1Do2srau0VI1RYCqylgxIgFSRcVI7zG1thEWkxpDMUAwZnf5a34fgXVNu_GGj35cI5dFK-WOlPFopz1YO0N0Jap1zv4AWMketxDewVl8i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Mieth, Robert ; Dvorkin, Yury</creator><creatorcontrib>Mieth, Robert ; Dvorkin, Yury</creatorcontrib><description>Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2018.2836870</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Generators ; Mathematical model ; Optimization ; Power systems ; Reactive power ; Robustness ; smart grid ; stochastic optimal control ; uncertain systems ; Uncertainty</subject><ispartof>IEEE control systems letters, 2018-07, Vol.2 (3), p.363-368</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</citedby><cites>FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</cites><orcidid>0000-0001-5383-826X ; 0000-0002-4426-7431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8359186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mieth, Robert</creatorcontrib><creatorcontrib>Dvorkin, Yury</creatorcontrib><title>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results.</description><subject>Computational modeling</subject><subject>Generators</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Power systems</subject><subject>Reactive power</subject><subject>Robustness</subject><subject>smart grid</subject><subject>stochastic optimal control</subject><subject>uncertain systems</subject><subject>Uncertainty</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkNFKwzAUhoMoOOZeQG_yAp3nnDRpeimbc0Jh4vTCq5KmKVS6dSSZY2_v5obo1X8u_u_w8zF2izBGhPy-mCw_lmMC1GPSQukMLtiA0kwmmEp1-ee-ZqMQPgEOVcqA8gFbTE00ydS3X27Np22Ivq22se3Xpuv2_LWvtiHyxSa2K9Pxl37nPJ91_Y43vf9X58t9iG4VbthVY7rgRuccsvfZ49tknhSLp-fJQ5FYUllMSCGmIssViDp1Do2srau0VI1RYCqylgxIgFSRcVI7zG1thEWkxpDMUAwZnf5a34fgXVNu_GGj35cI5dFK-WOlPFopz1YO0N0Jap1zv4AWMketxDewVl8i</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Mieth, Robert</creator><creator>Dvorkin, Yury</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5383-826X</orcidid><orcidid>https://orcid.org/0000-0002-4426-7431</orcidid></search><sort><creationdate>201807</creationdate><title>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</title><author>Mieth, Robert ; Dvorkin, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational modeling</topic><topic>Generators</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Power systems</topic><topic>Reactive power</topic><topic>Robustness</topic><topic>smart grid</topic><topic>stochastic optimal control</topic><topic>uncertain systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mieth, Robert</creatorcontrib><creatorcontrib>Dvorkin, Yury</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mieth, Robert</au><au>Dvorkin, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2018-07</date><risdate>2018</risdate><volume>2</volume><issue>3</issue><spage>363</spage><epage>368</epage><pages>363-368</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2018.2836870</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5383-826X</orcidid><orcidid>https://orcid.org/0000-0002-4426-7431</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2475-1456
ispartof IEEE control systems letters, 2018-07, Vol.2 (3), p.363-368
issn 2475-1456
2475-1456
language eng
recordid cdi_crossref_primary_10_1109_LCSYS_2018_2836870
source IEEE/IET Electronic Library (IEL)
subjects Computational modeling
Generators
Mathematical model
Optimization
Power systems
Reactive power
Robustness
smart grid
stochastic optimal control
uncertain systems
Uncertainty
title Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Distributionally%20Robust%20Optimal%20Power%20Flow%20for%20Distribution%20Systems&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Mieth,%20Robert&rft.date=2018-07&rft.volume=2&rft.issue=3&rft.spage=363&rft.epage=368&rft.pages=363-368&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2018.2836870&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2018_2836870%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8359186&rfr_iscdi=true