Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems
Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we d...
Gespeichert in:
Veröffentlicht in: | IEEE control systems letters 2018-07, Vol.2 (3), p.363-368 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 3 |
container_start_page | 363 |
container_title | IEEE control systems letters |
container_volume | 2 |
creator | Mieth, Robert Dvorkin, Yury |
description | Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results. |
doi_str_mv | 10.1109/LCSYS.2018.2836870 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCSYS_2018_2836870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359186</ieee_id><sourcerecordid>10_1109_LCSYS_2018_2836870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</originalsourceid><addsrcrecordid>eNpVkNFKwzAUhoMoOOZeQG_yAp3nnDRpeimbc0Jh4vTCq5KmKVS6dSSZY2_v5obo1X8u_u_w8zF2izBGhPy-mCw_lmMC1GPSQukMLtiA0kwmmEp1-ee-ZqMQPgEOVcqA8gFbTE00ydS3X27Np22Ivq22se3Xpuv2_LWvtiHyxSa2K9Pxl37nPJ91_Y43vf9X58t9iG4VbthVY7rgRuccsvfZ49tknhSLp-fJQ5FYUllMSCGmIssViDp1Do2srau0VI1RYCqylgxIgFSRcVI7zG1thEWkxpDMUAwZnf5a34fgXVNu_GGj35cI5dFK-WOlPFopz1YO0N0Jap1zv4AWMketxDewVl8i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Mieth, Robert ; Dvorkin, Yury</creator><creatorcontrib>Mieth, Robert ; Dvorkin, Yury</creatorcontrib><description>Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results.</description><identifier>ISSN: 2475-1456</identifier><identifier>EISSN: 2475-1456</identifier><identifier>DOI: 10.1109/LCSYS.2018.2836870</identifier><identifier>CODEN: ICSLBO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Generators ; Mathematical model ; Optimization ; Power systems ; Reactive power ; Robustness ; smart grid ; stochastic optimal control ; uncertain systems ; Uncertainty</subject><ispartof>IEEE control systems letters, 2018-07, Vol.2 (3), p.363-368</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</citedby><cites>FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</cites><orcidid>0000-0001-5383-826X ; 0000-0002-4426-7431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359186$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8359186$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mieth, Robert</creatorcontrib><creatorcontrib>Dvorkin, Yury</creatorcontrib><title>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</title><title>IEEE control systems letters</title><addtitle>LCSYS</addtitle><description>Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results.</description><subject>Computational modeling</subject><subject>Generators</subject><subject>Mathematical model</subject><subject>Optimization</subject><subject>Power systems</subject><subject>Reactive power</subject><subject>Robustness</subject><subject>smart grid</subject><subject>stochastic optimal control</subject><subject>uncertain systems</subject><subject>Uncertainty</subject><issn>2475-1456</issn><issn>2475-1456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkNFKwzAUhoMoOOZeQG_yAp3nnDRpeimbc0Jh4vTCq5KmKVS6dSSZY2_v5obo1X8u_u_w8zF2izBGhPy-mCw_lmMC1GPSQukMLtiA0kwmmEp1-ee-ZqMQPgEOVcqA8gFbTE00ydS3X27Np22Ivq22se3Xpuv2_LWvtiHyxSa2K9Pxl37nPJ91_Y43vf9X58t9iG4VbthVY7rgRuccsvfZ49tknhSLp-fJQ5FYUllMSCGmIssViDp1Do2srau0VI1RYCqylgxIgFSRcVI7zG1thEWkxpDMUAwZnf5a34fgXVNu_GGj35cI5dFK-WOlPFopz1YO0N0Jap1zv4AWMketxDewVl8i</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Mieth, Robert</creator><creator>Dvorkin, Yury</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5383-826X</orcidid><orcidid>https://orcid.org/0000-0002-4426-7431</orcidid></search><sort><creationdate>201807</creationdate><title>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</title><author>Mieth, Robert ; Dvorkin, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-26114379603d4ee1a5dceb856fa60ab2cc2a0500462ae58e19cda3c112fa25713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational modeling</topic><topic>Generators</topic><topic>Mathematical model</topic><topic>Optimization</topic><topic>Power systems</topic><topic>Reactive power</topic><topic>Robustness</topic><topic>smart grid</topic><topic>stochastic optimal control</topic><topic>uncertain systems</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mieth, Robert</creatorcontrib><creatorcontrib>Dvorkin, Yury</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE control systems letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mieth, Robert</au><au>Dvorkin, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems</atitle><jtitle>IEEE control systems letters</jtitle><stitle>LCSYS</stitle><date>2018-07</date><risdate>2018</risdate><volume>2</volume><issue>3</issue><spage>363</spage><epage>368</epage><pages>363-368</pages><issn>2475-1456</issn><eissn>2475-1456</eissn><coden>ICSLBO</coden><abstract>Increasing penetration of distributed energy resources complicate operations of electric power distribution systems by amplifying volatility of nodal power injections. On the other hand, these resources can provide additional control means to the distribution system operator (DSO). In this work we develop a data-driven distributionally robust decision-making framework in the DSO's perspective to overcome the uncertainty of these injections and its impact on the distribution system operations. We develop an ac optimal power flow formulation for radial distribution systems based on the LinDistFlow ac power flow approximation and exploit distributionally robust optimization to immunize the optimized decisions against uncertainty in the probabilistic models of forecast errors obtained from the available observations. The model is reformulated to be computationally tractable and tested on multiple IEEE distribution test systems. We also release the code supplement that implements the proposed model in Julia and can be used to reproduce our numerical results.</abstract><pub>IEEE</pub><doi>10.1109/LCSYS.2018.2836870</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5383-826X</orcidid><orcidid>https://orcid.org/0000-0002-4426-7431</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2475-1456 |
ispartof | IEEE control systems letters, 2018-07, Vol.2 (3), p.363-368 |
issn | 2475-1456 2475-1456 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCSYS_2018_2836870 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Computational modeling Generators Mathematical model Optimization Power systems Reactive power Robustness smart grid stochastic optimal control uncertain systems Uncertainty |
title | Data-Driven Distributionally Robust Optimal Power Flow for Distribution Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Distributionally%20Robust%20Optimal%20Power%20Flow%20for%20Distribution%20Systems&rft.jtitle=IEEE%20control%20systems%20letters&rft.au=Mieth,%20Robert&rft.date=2018-07&rft.volume=2&rft.issue=3&rft.spage=363&rft.epage=368&rft.pages=363-368&rft.issn=2475-1456&rft.eissn=2475-1456&rft.coden=ICSLBO&rft_id=info:doi/10.1109/LCSYS.2018.2836870&rft_dat=%3Ccrossref_RIE%3E10_1109_LCSYS_2018_2836870%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8359186&rfr_iscdi=true |