MAMC-Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length
In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model's adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propos...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2024-12, Vol.28 (12), p.2864-2868 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2868 |
---|---|
container_issue | 12 |
container_start_page | 2864 |
container_title | IEEE communications letters |
container_volume | 28 |
creator | Zhang, Yezhuo Zhou, Zinan Cao, Yichao Li, Guangyu Li, Xuanpeng |
description | In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model's adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model's capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on https://github.com/ZhangYezhuo/MAMC . |
doi_str_mv | 10.1109/LCOMM.2024.3474519 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2024_3474519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10705364</ieee_id><sourcerecordid>3143027393</sourcerecordid><originalsourceid>FETCH-LOGICAL-c923-b5ba8bee9a3c70689b00059fa18a12bd437c35a8206a97746c0c96972d6a3eff3</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOKf_gPhQ8LkzH02TPJYyP2BlDw58DGmabJldO5MW3H9vZn3w5d5z4ZzD5QfAPYILhKB4WpXrqlpgiLMFyVhGkbgAM0QpT3Ecl1FDLlLGBL8GNyHsIYQcUzQDn1VRlen6OLiDapO-SwqtR6_0KVFdkyytddqZLp6290kxDv1BDU4nVd-MbVQxULYqBBd90_nhhl2y_B5M15gmeXfbLvauTLcddrfgyqo2mLu_PQeb5-WmfE1X65e3slilWmCS1rRWvDZGKKIZzLmo47NUWIW4QrhuMsI0oYpjmCvBWJZrqEUuGG5yRYy1ZA4ep9qj779GEwa570cf3wiSoIxAzIgg0YUnl_Z9CN5YefSRgT9JBOWZqfxlKs9M5R_TGHqYQs4Y8y_AICV5Rn4A7Y9zHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3143027393</pqid></control><display><type>article</type><title>MAMC-Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yezhuo ; Zhou, Zinan ; Cao, Yichao ; Li, Guangyu ; Li, Xuanpeng</creator><creatorcontrib>Zhang, Yezhuo ; Zhou, Zinan ; Cao, Yichao ; Li, Guangyu ; Li, Xuanpeng</creatorcontrib><description>In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model's adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model's capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on https://github.com/ZhangYezhuo/MAMC .</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2024.3474519</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptation models ; Automatic modulation classification ; Classification ; cognitive radio ; Computational modeling ; Computing time ; Convolution ; Feature extraction ; long sequence ; mamba ; Mathematical models ; Memory management ; Modulation ; Noise reduction ; state space model ; State space models ; Training</subject><ispartof>IEEE communications letters, 2024-12, Vol.28 (12), p.2864-2868</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c923-b5ba8bee9a3c70689b00059fa18a12bd437c35a8206a97746c0c96972d6a3eff3</cites><orcidid>0000-0001-9320-0658 ; 0000-0003-2997-4012 ; 0009-0008-6670-447X ; 0000-0003-4817-0618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10705364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10705364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yezhuo</creatorcontrib><creatorcontrib>Zhou, Zinan</creatorcontrib><creatorcontrib>Cao, Yichao</creatorcontrib><creatorcontrib>Li, Guangyu</creatorcontrib><creatorcontrib>Li, Xuanpeng</creatorcontrib><title>MAMC-Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model's adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model's capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on https://github.com/ZhangYezhuo/MAMC .</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>cognitive radio</subject><subject>Computational modeling</subject><subject>Computing time</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>long sequence</subject><subject>mamba</subject><subject>Mathematical models</subject><subject>Memory management</subject><subject>Modulation</subject><subject>Noise reduction</subject><subject>state space model</subject><subject>State space models</subject><subject>Training</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1LwzAUxYMoOKf_gPhQ8LkzH02TPJYyP2BlDw58DGmabJldO5MW3H9vZn3w5d5z4ZzD5QfAPYILhKB4WpXrqlpgiLMFyVhGkbgAM0QpT3Ecl1FDLlLGBL8GNyHsIYQcUzQDn1VRlen6OLiDapO-SwqtR6_0KVFdkyytddqZLp6290kxDv1BDU4nVd-MbVQxULYqBBd90_nhhl2y_B5M15gmeXfbLvauTLcddrfgyqo2mLu_PQeb5-WmfE1X65e3slilWmCS1rRWvDZGKKIZzLmo47NUWIW4QrhuMsI0oYpjmCvBWJZrqEUuGG5yRYy1ZA4ep9qj779GEwa570cf3wiSoIxAzIgg0YUnl_Z9CN5YefSRgT9JBOWZqfxlKs9M5R_TGHqYQs4Y8y_AICV5Rn4A7Y9zHQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhang, Yezhuo</creator><creator>Zhou, Zinan</creator><creator>Cao, Yichao</creator><creator>Li, Guangyu</creator><creator>Li, Xuanpeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9320-0658</orcidid><orcidid>https://orcid.org/0000-0003-2997-4012</orcidid><orcidid>https://orcid.org/0009-0008-6670-447X</orcidid><orcidid>https://orcid.org/0000-0003-4817-0618</orcidid></search><sort><creationdate>202412</creationdate><title>MAMC-Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length</title><author>Zhang, Yezhuo ; Zhou, Zinan ; Cao, Yichao ; Li, Guangyu ; Li, Xuanpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c923-b5ba8bee9a3c70689b00059fa18a12bd437c35a8206a97746c0c96972d6a3eff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>cognitive radio</topic><topic>Computational modeling</topic><topic>Computing time</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>long sequence</topic><topic>mamba</topic><topic>Mathematical models</topic><topic>Memory management</topic><topic>Modulation</topic><topic>Noise reduction</topic><topic>state space model</topic><topic>State space models</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yezhuo</creatorcontrib><creatorcontrib>Zhou, Zinan</creatorcontrib><creatorcontrib>Cao, Yichao</creatorcontrib><creatorcontrib>Li, Guangyu</creatorcontrib><creatorcontrib>Li, Xuanpeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yezhuo</au><au>Zhou, Zinan</au><au>Cao, Yichao</au><au>Li, Guangyu</au><au>Li, Xuanpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAMC-Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2024-12</date><risdate>2024</risdate><volume>28</volume><issue>12</issue><spage>2864</spage><epage>2868</epage><pages>2864-2868</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model's adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model's capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on https://github.com/ZhangYezhuo/MAMC .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2024.3474519</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9320-0658</orcidid><orcidid>https://orcid.org/0000-0003-2997-4012</orcidid><orcidid>https://orcid.org/0009-0008-6670-447X</orcidid><orcidid>https://orcid.org/0000-0003-4817-0618</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2024-12, Vol.28 (12), p.2864-2868 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCOMM_2024_3474519 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Adaptation models Automatic modulation classification Classification cognitive radio Computational modeling Computing time Convolution Feature extraction long sequence mamba Mathematical models Memory management Modulation Noise reduction state space model State space models Training |
title | MAMC-Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAMC-Optimal%20on%20Accuracy%20and%20Efficiency%20for%20Automatic%20Modulation%20Classification%20With%20Extended%20Signal%20Length&rft.jtitle=IEEE%20communications%20letters&rft.au=Zhang,%20Yezhuo&rft.date=2024-12&rft.volume=28&rft.issue=12&rft.spage=2864&rft.epage=2868&rft.pages=2864-2868&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2024.3474519&rft_dat=%3Cproquest_RIE%3E3143027393%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3143027393&rft_id=info:pmid/&rft_ieee_id=10705364&rfr_iscdi=true |