MAMC-Optimal on Accuracy and Efficiency for Automatic Modulation Classification With Extended Signal Length
In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model's adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propos...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2024-01, Vol.28 (12), p.2864-2868 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Automatic Modulation Classification (AMC), extended signal lengths offer a bounty of information, yet impede the model's adaptability, introduce more noise interference, extend the training and inference time, and increase memory usage. To bridge the gap between these requirements, we propose a novel AMC framework, designated as the Mamba-based Automatic Modulation Classification (MAMC), which addresses the accuracy and efficiency requirements for long-sequence AMC. Specifically, we introduce the Selective State Space Model (Mamba), which enhances the model's capabilities in long-term memory and information selection, and reduces computational complexity and spatial overhead. We further design a denoising unit to filter out effective semantic information to improve accuracy. Rigorous experimental evaluations on the publicly available dataset RML2016.10 and TorchSig affirm that MAMC delivers superior recognition accuracy while necessitating minimal computational time and memory occupancy. Codes are available on https://github.com/ZhangYezhuo/MAMC . |
---|---|
ISSN: | 1089-7798 1558-2558 |
DOI: | 10.1109/LCOMM.2024.3474519 |