One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation
Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits e...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2022-12, Vol.26 (12), p.2959-2963 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2963 |
---|---|
container_issue | 12 |
container_start_page | 2959 |
container_title | IEEE communications letters |
container_volume | 26 |
creator | Hu, Han Zhu, Xingwu Zhou, Fuhui Wu, Wei Hu, Rose Qingyang Zhu, Hongbo |
description | Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime. |
doi_str_mv | 10.1109/LCOMM.2022.3203984 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2022_3203984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9885016</ieee_id><sourcerecordid>2748565515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-BSies68tkk3FAZMGnTkAYXLlGWuajTmo6kReq_p_sQF9uy39e2HoRuCR4TgvXDLF_M52OKKR0ziplW_AwNiBAqpX0472usdCqlVpfoKsYNxlhRQQboa-Ehbep0bn2XLKGyvildktdV1frS2aasfbLsYgNVfEyeIZbffpRMq90WKvDNYT5K3iEUdei9DpLJr922h_41uijsNsLNKQ_R58vkI39LZ4vXaf40Sx3VokkzUYDSgtNCCSxAOicZX-sMuJVA1tJKljnMNcMry6GwQiu9WjPKLdGCYsWG6P64dxfqnxZiYzZ1G3x_0lDJlciEIKJX0aPKhTrGAIXZhbKyoTMEmz1Dc2Bo9gzNiWFvujuaSgD4N2jVf0oy9gfEpG1i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748565515</pqid></control><display><type>article</type><title>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Han ; Zhu, Xingwu ; Zhou, Fuhui ; Wu, Wei ; Hu, Rose Qingyang ; Zhu, Hongbo</creator><creatorcontrib>Hu, Han ; Zhu, Xingwu ; Zhou, Fuhui ; Wu, Wei ; Hu, Rose Qingyang ; Zhu, Hongbo</creatorcontrib><description>Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2022.3203984</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Communication systems ; Communications systems ; Decoding ; Deep learning ; Machine learning ; multi-user communications ; Performance evaluation ; Receivers ; semantic communications ; Semantics ; Signal to noise ratio ; Symbols ; Training ; Transmitters</subject><ispartof>IEEE communications letters, 2022-12, Vol.26 (12), p.2959-2963</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</citedby><cites>FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</cites><orcidid>0000-0001-8534-3667 ; 0000-0003-3687-4431 ; 0000-0002-1032-4434 ; 0000-0002-1571-3631 ; 0000-0001-6880-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9885016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9885016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Zhu, Xingwu</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Hu, Rose Qingyang</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><title>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.</description><subject>Artificial neural networks</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>multi-user communications</subject><subject>Performance evaluation</subject><subject>Receivers</subject><subject>semantic communications</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Symbols</subject><subject>Training</subject><subject>Transmitters</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwB-BSies68tkk3FAZMGnTkAYXLlGWuajTmo6kReq_p_sQF9uy39e2HoRuCR4TgvXDLF_M52OKKR0ziplW_AwNiBAqpX0472usdCqlVpfoKsYNxlhRQQboa-Ehbep0bn2XLKGyvildktdV1frS2aasfbLsYgNVfEyeIZbffpRMq90WKvDNYT5K3iEUdei9DpLJr922h_41uijsNsLNKQ_R58vkI39LZ4vXaf40Sx3VokkzUYDSgtNCCSxAOicZX-sMuJVA1tJKljnMNcMry6GwQiu9WjPKLdGCYsWG6P64dxfqnxZiYzZ1G3x_0lDJlciEIKJX0aPKhTrGAIXZhbKyoTMEmz1Dc2Bo9gzNiWFvujuaSgD4N2jVf0oy9gfEpG1i</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hu, Han</creator><creator>Zhu, Xingwu</creator><creator>Zhou, Fuhui</creator><creator>Wu, Wei</creator><creator>Hu, Rose Qingyang</creator><creator>Zhu, Hongbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8534-3667</orcidid><orcidid>https://orcid.org/0000-0003-3687-4431</orcidid><orcidid>https://orcid.org/0000-0002-1032-4434</orcidid><orcidid>https://orcid.org/0000-0002-1571-3631</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></search><sort><creationdate>20221201</creationdate><title>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</title><author>Hu, Han ; Zhu, Xingwu ; Zhou, Fuhui ; Wu, Wei ; Hu, Rose Qingyang ; Zhu, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>multi-user communications</topic><topic>Performance evaluation</topic><topic>Receivers</topic><topic>semantic communications</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Symbols</topic><topic>Training</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Zhu, Xingwu</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Hu, Rose Qingyang</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Han</au><au>Zhu, Xingwu</au><au>Zhou, Fuhui</au><au>Wu, Wei</au><au>Hu, Rose Qingyang</au><au>Zhu, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>26</volume><issue>12</issue><spage>2959</spage><epage>2963</epage><pages>2959-2963</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2022.3203984</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8534-3667</orcidid><orcidid>https://orcid.org/0000-0003-3687-4431</orcidid><orcidid>https://orcid.org/0000-0002-1032-4434</orcidid><orcidid>https://orcid.org/0000-0002-1571-3631</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2022-12, Vol.26 (12), p.2959-2963 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCOMM_2022_3203984 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Communication systems Communications systems Decoding Deep learning Machine learning multi-user communications Performance evaluation Receivers semantic communications Semantics Signal to noise ratio Symbols Training Transmitters |
title | One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-to-Many%20Semantic%20Communication%20Systems:%20Design,%20Implementation,%20Performance%20Evaluation&rft.jtitle=IEEE%20communications%20letters&rft.au=Hu,%20Han&rft.date=2022-12-01&rft.volume=26&rft.issue=12&rft.spage=2959&rft.epage=2963&rft.pages=2959-2963&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2022.3203984&rft_dat=%3Cproquest_RIE%3E2748565515%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748565515&rft_id=info:pmid/&rft_ieee_id=9885016&rfr_iscdi=true |