One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation

Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2022-12, Vol.26 (12), p.2959-2963
Hauptverfasser: Hu, Han, Zhu, Xingwu, Zhou, Fuhui, Wu, Wei, Hu, Rose Qingyang, Zhu, Hongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2963
container_issue 12
container_start_page 2959
container_title IEEE communications letters
container_volume 26
creator Hu, Han
Zhu, Xingwu
Zhou, Fuhui
Wu, Wei
Hu, Rose Qingyang
Zhu, Hongbo
description Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.
doi_str_mv 10.1109/LCOMM.2022.3203984
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2022_3203984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9885016</ieee_id><sourcerecordid>2748565515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-BSies68tkk3FAZMGnTkAYXLlGWuajTmo6kReq_p_sQF9uy39e2HoRuCR4TgvXDLF_M52OKKR0ziplW_AwNiBAqpX0472usdCqlVpfoKsYNxlhRQQboa-Ehbep0bn2XLKGyvildktdV1frS2aasfbLsYgNVfEyeIZbffpRMq90WKvDNYT5K3iEUdei9DpLJr922h_41uijsNsLNKQ_R58vkI39LZ4vXaf40Sx3VokkzUYDSgtNCCSxAOicZX-sMuJVA1tJKljnMNcMry6GwQiu9WjPKLdGCYsWG6P64dxfqnxZiYzZ1G3x_0lDJlciEIKJX0aPKhTrGAIXZhbKyoTMEmz1Dc2Bo9gzNiWFvujuaSgD4N2jVf0oy9gfEpG1i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748565515</pqid></control><display><type>article</type><title>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Han ; Zhu, Xingwu ; Zhou, Fuhui ; Wu, Wei ; Hu, Rose Qingyang ; Zhu, Hongbo</creator><creatorcontrib>Hu, Han ; Zhu, Xingwu ; Zhou, Fuhui ; Wu, Wei ; Hu, Rose Qingyang ; Zhu, Hongbo</creatorcontrib><description>Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2022.3203984</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Communication systems ; Communications systems ; Decoding ; Deep learning ; Machine learning ; multi-user communications ; Performance evaluation ; Receivers ; semantic communications ; Semantics ; Signal to noise ratio ; Symbols ; Training ; Transmitters</subject><ispartof>IEEE communications letters, 2022-12, Vol.26 (12), p.2959-2963</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</citedby><cites>FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</cites><orcidid>0000-0001-8534-3667 ; 0000-0003-3687-4431 ; 0000-0002-1032-4434 ; 0000-0002-1571-3631 ; 0000-0001-6880-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9885016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9885016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Zhu, Xingwu</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Hu, Rose Qingyang</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><title>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.</description><subject>Artificial neural networks</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>multi-user communications</subject><subject>Performance evaluation</subject><subject>Receivers</subject><subject>semantic communications</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Symbols</subject><subject>Training</subject><subject>Transmitters</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwB-BSies68tkk3FAZMGnTkAYXLlGWuajTmo6kReq_p_sQF9uy39e2HoRuCR4TgvXDLF_M52OKKR0ziplW_AwNiBAqpX0472usdCqlVpfoKsYNxlhRQQboa-Ehbep0bn2XLKGyvildktdV1frS2aasfbLsYgNVfEyeIZbffpRMq90WKvDNYT5K3iEUdei9DpLJr922h_41uijsNsLNKQ_R58vkI39LZ4vXaf40Sx3VokkzUYDSgtNCCSxAOicZX-sMuJVA1tJKljnMNcMry6GwQiu9WjPKLdGCYsWG6P64dxfqnxZiYzZ1G3x_0lDJlciEIKJX0aPKhTrGAIXZhbKyoTMEmz1Dc2Bo9gzNiWFvujuaSgD4N2jVf0oy9gfEpG1i</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hu, Han</creator><creator>Zhu, Xingwu</creator><creator>Zhou, Fuhui</creator><creator>Wu, Wei</creator><creator>Hu, Rose Qingyang</creator><creator>Zhu, Hongbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8534-3667</orcidid><orcidid>https://orcid.org/0000-0003-3687-4431</orcidid><orcidid>https://orcid.org/0000-0002-1032-4434</orcidid><orcidid>https://orcid.org/0000-0002-1571-3631</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></search><sort><creationdate>20221201</creationdate><title>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</title><author>Hu, Han ; Zhu, Xingwu ; Zhou, Fuhui ; Wu, Wei ; Hu, Rose Qingyang ; Zhu, Hongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-65fe89542f8505e7cc734d96e4a7e1d7a736c04930ba4efa5989bd324a1952083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>multi-user communications</topic><topic>Performance evaluation</topic><topic>Receivers</topic><topic>semantic communications</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Symbols</topic><topic>Training</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Han</creatorcontrib><creatorcontrib>Zhu, Xingwu</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Hu, Rose Qingyang</creatorcontrib><creatorcontrib>Zhu, Hongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Han</au><au>Zhu, Xingwu</au><au>Zhou, Fuhui</au><au>Wu, Wei</au><au>Hu, Rose Qingyang</au><au>Zhu, Hongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>26</volume><issue>12</issue><spage>2959</spage><epage>2963</epage><pages>2959-2963</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2022.3203984</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8534-3667</orcidid><orcidid>https://orcid.org/0000-0003-3687-4431</orcidid><orcidid>https://orcid.org/0000-0002-1032-4434</orcidid><orcidid>https://orcid.org/0000-0002-1571-3631</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2022-12, Vol.26 (12), p.2959-2963
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2022_3203984
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Communication systems
Communications systems
Decoding
Deep learning
Machine learning
multi-user communications
Performance evaluation
Receivers
semantic communications
Semantics
Signal to noise ratio
Symbols
Training
Transmitters
title One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A30%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-to-Many%20Semantic%20Communication%20Systems:%20Design,%20Implementation,%20Performance%20Evaluation&rft.jtitle=IEEE%20communications%20letters&rft.au=Hu,%20Han&rft.date=2022-12-01&rft.volume=26&rft.issue=12&rft.spage=2959&rft.epage=2963&rft.pages=2959-2963&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2022.3203984&rft_dat=%3Cproquest_RIE%3E2748565515%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748565515&rft_id=info:pmid/&rft_ieee_id=9885016&rfr_iscdi=true