Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO
In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep le...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2021-08, Vol.25 (8), p.2624-2628 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2628 |
---|---|
container_issue | 8 |
container_start_page | 2624 |
container_title | IEEE communications letters |
container_volume | 25 |
creator | Cao, Zheng Shih, Wan-Ting Guo, Jiajia Wen, Chao-Kai Jin, Shi |
description | In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques. |
doi_str_mv | 10.1109/LCOMM.2021.3076504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2021_3076504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419066</ieee_id><sourcerecordid>2560134473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwA7CxxDrl-hXHSxTxKEroAlhbrmtD2lIXO2nF35M-xGbmLmauRgehawIjQkDdVeWkrkcUKBkxkLkAfoIGRIgio72c9jcUKpNSFefoIqU5ABRUkAF6qZrPr3brdorLsNqEZdc2YWWW-NV1cW_tNsRFwj5EXL6N8aNzs6mxC9yscG1SajYO1-N6conOvFkmd3X0Ifp4fHgvn7Nq8jQu76vMspy0GaViai23UyMNA0Y99Qp4P8gWfGZlIaTh0kuiWG6l8Eoy06fAWyC5lMKyIbo9_F3H8NO51Op56GK_OGkqciCMc8n6FD2kbAwpRef1OjbfJv5qAnrHTO-Z6R0zfWTWl24OpcY5919QnCjIc_YH-sBmJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134473</pqid></control><display><type>article</type><title>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Zheng ; Shih, Wan-Ting ; Guo, Jiajia ; Wen, Chao-Kai ; Jin, Shi</creator><creatorcontrib>Cao, Zheng ; Shih, Wan-Ting ; Guo, Jiajia ; Wen, Chao-Kai ; Jin, Shi</creatorcontrib><description>In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3076504</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Codes ; Complexity ; Computer architecture ; Convolutional neural networks ; CSI feedback ; Deep learning ; Downlink ; FDD ; Feedback ; Frequency conversion ; Frequency division duplexing ; Lightweight ; lightweight neural network ; Massive MIMO ; Parameters ; Simulation</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2624-2628</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</citedby><cites>FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</cites><orcidid>0000-0002-6220-2295 ; 0000-0001-5952-232X ; 0000-0001-6226-5280 ; 0000-0001-5411-5223 ; 0000-0003-0271-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419066$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419066$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Shih, Wan-Ting</creatorcontrib><creatorcontrib>Guo, Jiajia</creatorcontrib><creatorcontrib>Wen, Chao-Kai</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><title>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques.</description><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>CSI feedback</subject><subject>Deep learning</subject><subject>Downlink</subject><subject>FDD</subject><subject>Feedback</subject><subject>Frequency conversion</subject><subject>Frequency division duplexing</subject><subject>Lightweight</subject><subject>lightweight neural network</subject><subject>Massive MIMO</subject><subject>Parameters</subject><subject>Simulation</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURC0EEqXwA7CxxDrl-hXHSxTxKEroAlhbrmtD2lIXO2nF35M-xGbmLmauRgehawIjQkDdVeWkrkcUKBkxkLkAfoIGRIgio72c9jcUKpNSFefoIqU5ABRUkAF6qZrPr3brdorLsNqEZdc2YWWW-NV1cW_tNsRFwj5EXL6N8aNzs6mxC9yscG1SajYO1-N6conOvFkmd3X0Ifp4fHgvn7Nq8jQu76vMspy0GaViai23UyMNA0Y99Qp4P8gWfGZlIaTh0kuiWG6l8Eoy06fAWyC5lMKyIbo9_F3H8NO51Op56GK_OGkqciCMc8n6FD2kbAwpRef1OjbfJv5qAnrHTO-Z6R0zfWTWl24OpcY5919QnCjIc_YH-sBmJw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cao, Zheng</creator><creator>Shih, Wan-Ting</creator><creator>Guo, Jiajia</creator><creator>Wen, Chao-Kai</creator><creator>Jin, Shi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6220-2295</orcidid><orcidid>https://orcid.org/0000-0001-5952-232X</orcidid><orcidid>https://orcid.org/0000-0001-6226-5280</orcidid><orcidid>https://orcid.org/0000-0001-5411-5223</orcidid><orcidid>https://orcid.org/0000-0003-0271-6021</orcidid></search><sort><creationdate>20210801</creationdate><title>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</title><author>Cao, Zheng ; Shih, Wan-Ting ; Guo, Jiajia ; Wen, Chao-Kai ; Jin, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>CSI feedback</topic><topic>Deep learning</topic><topic>Downlink</topic><topic>FDD</topic><topic>Feedback</topic><topic>Frequency conversion</topic><topic>Frequency division duplexing</topic><topic>Lightweight</topic><topic>lightweight neural network</topic><topic>Massive MIMO</topic><topic>Parameters</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Shih, Wan-Ting</creatorcontrib><creatorcontrib>Guo, Jiajia</creatorcontrib><creatorcontrib>Wen, Chao-Kai</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Zheng</au><au>Shih, Wan-Ting</au><au>Guo, Jiajia</au><au>Wen, Chao-Kai</au><au>Jin, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2624</spage><epage>2628</epage><pages>2624-2628</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3076504</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6220-2295</orcidid><orcidid>https://orcid.org/0000-0001-5952-232X</orcidid><orcidid>https://orcid.org/0000-0001-6226-5280</orcidid><orcidid>https://orcid.org/0000-0001-5411-5223</orcidid><orcidid>https://orcid.org/0000-0003-0271-6021</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2021-08, Vol.25 (8), p.2624-2628 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCOMM_2021_3076504 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Codes Complexity Computer architecture Convolutional neural networks CSI feedback Deep learning Downlink FDD Feedback Frequency conversion Frequency division duplexing Lightweight lightweight neural network Massive MIMO Parameters Simulation |
title | Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Convolutional%20Neural%20Networks%20for%20CSI%20Feedback%20in%20Massive%20MIMO&rft.jtitle=IEEE%20communications%20letters&rft.au=Cao,%20Zheng&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2624&rft.epage=2628&rft.pages=2624-2628&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3076504&rft_dat=%3Cproquest_RIE%3E2560134473%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134473&rft_id=info:pmid/&rft_ieee_id=9419066&rfr_iscdi=true |