Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO

In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep le...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2021-08, Vol.25 (8), p.2624-2628
Hauptverfasser: Cao, Zheng, Shih, Wan-Ting, Guo, Jiajia, Wen, Chao-Kai, Jin, Shi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2628
container_issue 8
container_start_page 2624
container_title IEEE communications letters
container_volume 25
creator Cao, Zheng
Shih, Wan-Ting
Guo, Jiajia
Wen, Chao-Kai
Jin, Shi
description In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques.
doi_str_mv 10.1109/LCOMM.2021.3076504
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2021_3076504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419066</ieee_id><sourcerecordid>2560134473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwA7CxxDrl-hXHSxTxKEroAlhbrmtD2lIXO2nF35M-xGbmLmauRgehawIjQkDdVeWkrkcUKBkxkLkAfoIGRIgio72c9jcUKpNSFefoIqU5ABRUkAF6qZrPr3brdorLsNqEZdc2YWWW-NV1cW_tNsRFwj5EXL6N8aNzs6mxC9yscG1SajYO1-N6conOvFkmd3X0Ifp4fHgvn7Nq8jQu76vMspy0GaViai23UyMNA0Y99Qp4P8gWfGZlIaTh0kuiWG6l8Eoy06fAWyC5lMKyIbo9_F3H8NO51Op56GK_OGkqciCMc8n6FD2kbAwpRef1OjbfJv5qAnrHTO-Z6R0zfWTWl24OpcY5919QnCjIc_YH-sBmJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134473</pqid></control><display><type>article</type><title>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</title><source>IEEE Electronic Library (IEL)</source><creator>Cao, Zheng ; Shih, Wan-Ting ; Guo, Jiajia ; Wen, Chao-Kai ; Jin, Shi</creator><creatorcontrib>Cao, Zheng ; Shih, Wan-Ting ; Guo, Jiajia ; Wen, Chao-Kai ; Jin, Shi</creatorcontrib><description>In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3076504</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Codes ; Complexity ; Computer architecture ; Convolutional neural networks ; CSI feedback ; Deep learning ; Downlink ; FDD ; Feedback ; Frequency conversion ; Frequency division duplexing ; Lightweight ; lightweight neural network ; Massive MIMO ; Parameters ; Simulation</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2624-2628</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</citedby><cites>FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</cites><orcidid>0000-0002-6220-2295 ; 0000-0001-5952-232X ; 0000-0001-6226-5280 ; 0000-0001-5411-5223 ; 0000-0003-0271-6021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419066$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419066$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Shih, Wan-Ting</creatorcontrib><creatorcontrib>Guo, Jiajia</creatorcontrib><creatorcontrib>Wen, Chao-Kai</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><title>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques.</description><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Complexity</subject><subject>Computer architecture</subject><subject>Convolutional neural networks</subject><subject>CSI feedback</subject><subject>Deep learning</subject><subject>Downlink</subject><subject>FDD</subject><subject>Feedback</subject><subject>Frequency conversion</subject><subject>Frequency division duplexing</subject><subject>Lightweight</subject><subject>lightweight neural network</subject><subject>Massive MIMO</subject><subject>Parameters</subject><subject>Simulation</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURC0EEqXwA7CxxDrl-hXHSxTxKEroAlhbrmtD2lIXO2nF35M-xGbmLmauRgehawIjQkDdVeWkrkcUKBkxkLkAfoIGRIgio72c9jcUKpNSFefoIqU5ABRUkAF6qZrPr3brdorLsNqEZdc2YWWW-NV1cW_tNsRFwj5EXL6N8aNzs6mxC9yscG1SajYO1-N6conOvFkmd3X0Ifp4fHgvn7Nq8jQu76vMspy0GaViai23UyMNA0Y99Qp4P8gWfGZlIaTh0kuiWG6l8Eoy06fAWyC5lMKyIbo9_F3H8NO51Op56GK_OGkqciCMc8n6FD2kbAwpRef1OjbfJv5qAnrHTO-Z6R0zfWTWl24OpcY5919QnCjIc_YH-sBmJw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Cao, Zheng</creator><creator>Shih, Wan-Ting</creator><creator>Guo, Jiajia</creator><creator>Wen, Chao-Kai</creator><creator>Jin, Shi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6220-2295</orcidid><orcidid>https://orcid.org/0000-0001-5952-232X</orcidid><orcidid>https://orcid.org/0000-0001-6226-5280</orcidid><orcidid>https://orcid.org/0000-0001-5411-5223</orcidid><orcidid>https://orcid.org/0000-0003-0271-6021</orcidid></search><sort><creationdate>20210801</creationdate><title>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</title><author>Cao, Zheng ; Shih, Wan-Ting ; Guo, Jiajia ; Wen, Chao-Kai ; Jin, Shi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-225bcc4cba7a3032f2f904000c84dc7857a47f71936c75f973a0320fc016775c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Complexity</topic><topic>Computer architecture</topic><topic>Convolutional neural networks</topic><topic>CSI feedback</topic><topic>Deep learning</topic><topic>Downlink</topic><topic>FDD</topic><topic>Feedback</topic><topic>Frequency conversion</topic><topic>Frequency division duplexing</topic><topic>Lightweight</topic><topic>lightweight neural network</topic><topic>Massive MIMO</topic><topic>Parameters</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Zheng</creatorcontrib><creatorcontrib>Shih, Wan-Ting</creatorcontrib><creatorcontrib>Guo, Jiajia</creatorcontrib><creatorcontrib>Wen, Chao-Kai</creatorcontrib><creatorcontrib>Jin, Shi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cao, Zheng</au><au>Shih, Wan-Ting</au><au>Guo, Jiajia</au><au>Wen, Chao-Kai</au><au>Jin, Shi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2624</spage><epage>2628</epage><pages>2624-2628</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In frequency division duplex mode of massive multiple-input multiple-output systems, the downlink channel state information (CSI) must be sent to the base station (BS) through a feedback link. However, transmitting CSI to the BS is costly due to the bandwidth limitation of the feedback link. Deep learning (DL) has recently achieved remarkable success in CSI feedback. Realizing high-performance and low-complexity CSI feedback is a challenge in DL-based communication. We develop a DL-based CSI feedback network in this study to complete the feedback of CSI effectively. However, this network cannot be effectively applied to the mobile terminal due to its excessive number of parameters and high computational complexity. Therefore, we further propose a new lightweight CSI feedback network based on the developed network. Simulation results show that the proposed CSI network maintains a few parameters and parameter complexity while exhibiting better reconstruction performance than existing works. These findings suggest the feasibility and potential of the proposed techniques.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3076504</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-6220-2295</orcidid><orcidid>https://orcid.org/0000-0001-5952-232X</orcidid><orcidid>https://orcid.org/0000-0001-6226-5280</orcidid><orcidid>https://orcid.org/0000-0001-5411-5223</orcidid><orcidid>https://orcid.org/0000-0003-0271-6021</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2021-08, Vol.25 (8), p.2624-2628
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2021_3076504
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Codes
Complexity
Computer architecture
Convolutional neural networks
CSI feedback
Deep learning
Downlink
FDD
Feedback
Frequency conversion
Frequency division duplexing
Lightweight
lightweight neural network
Massive MIMO
Parameters
Simulation
title Lightweight Convolutional Neural Networks for CSI Feedback in Massive MIMO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Convolutional%20Neural%20Networks%20for%20CSI%20Feedback%20in%20Massive%20MIMO&rft.jtitle=IEEE%20communications%20letters&rft.au=Cao,%20Zheng&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2624&rft.epage=2628&rft.pages=2624-2628&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3076504&rft_dat=%3Cproquest_RIE%3E2560134473%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134473&rft_id=info:pmid/&rft_ieee_id=9419066&rfr_iscdi=true