On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles

Low-density parity-check (LDPC) codes exhibit excellent error correcting capability. However, small trapping sets in the Tanner graph are harmful to the iterative decoding algorithm. In this letter, we present a method of constructing (3, n) girth-eight quasi-cyclic LDPC codes with low error floor b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-01, Vol.22 (1), p.9-12
Hauptverfasser: Tao, Xiongfei, Li, Yufei, Liu, Yonghe, Hu, Zuoqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 9
container_title IEEE communications letters
container_volume 22
creator Tao, Xiongfei
Li, Yufei
Liu, Yonghe
Hu, Zuoqi
description Low-density parity-check (LDPC) codes exhibit excellent error correcting capability. However, small trapping sets in the Tanner graph are harmful to the iterative decoding algorithm. In this letter, we present a method of constructing (3, n) girth-eight quasi-cyclic LDPC codes with low error floor by removing the small trapping sets from the Tanner graph. To address this issue, we analyze the relationship between eight-cycles and small trapping sets of Tanner graphs based on fully connected base graphs without parallel edges. We find that if some eight-cycles are not found in the Tanner graphs, any elementary trapping set in the range of a ≤ 8 and b ≤ 3 is removed naturally. We also derive a lower bound on the permutation size for the construction of such codes. The experimental simulation shows a favorable error rate performance with lower error floor over additive white Gaussian noise channels.
doi_str_mv 10.1109/LCOMM.2017.2679707
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2017_2679707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7874123</ieee_id><sourcerecordid>10_1109_LCOMM_2017_2679707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-cb4d297454bf339d54fb76552e65fcc46aa0cb7cb747c47bfaf8eb9d705e55093</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKdfQF_yBTqTNOk1j1LdFDombD6XJL1opWtHUh_27W3dEI674w-_4_gRcs_ZgnOmH8tis14vBOOwEBloYHBBZlypPBFjuxx3lusEQOfX5CbGb8ZYLhSfke2mo8MX0qLv4hB-3ND0He09LZ_fizGsMdJlQJyi7d60Ld0Fczg03Sfd4hCpPU7kEPq2nbLi6FqMt-TKmzbi3XnOycfyZVe8JuVm9VY8lYkbfxwSZ2UtNEglrU9TXSvpLWRKCcyUd05mxjBnYSwJToL1xudodQ1MoVJMp3MiTndd6GMM6KtDaPYmHCvOqklL9aelmrRUZy0j9HCCGkT8ByAHyUWa_gJGJV7N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles</title><source>IEEE Electronic Library (IEL)</source><creator>Tao, Xiongfei ; Li, Yufei ; Liu, Yonghe ; Hu, Zuoqi</creator><creatorcontrib>Tao, Xiongfei ; Li, Yufei ; Liu, Yonghe ; Hu, Zuoqi</creatorcontrib><description>Low-density parity-check (LDPC) codes exhibit excellent error correcting capability. However, small trapping sets in the Tanner graph are harmful to the iterative decoding algorithm. In this letter, we present a method of constructing (3, n) girth-eight quasi-cyclic LDPC codes with low error floor by removing the small trapping sets from the Tanner graph. To address this issue, we analyze the relationship between eight-cycles and small trapping sets of Tanner graphs based on fully connected base graphs without parallel edges. We find that if some eight-cycles are not found in the Tanner graphs, any elementary trapping set in the range of a ≤ 8 and b ≤ 3 is removed naturally. We also derive a lower bound on the permutation size for the construction of such codes. The experimental simulation shows a favorable error rate performance with lower error floor over additive white Gaussian noise channels.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2017.2679707</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electronic mail ; Error analysis ; Indexes ; Iterative decoding ; low error floor ; low-density parity-check (LDPC) codes ; Signal to noise ratio ; Trapping sets</subject><ispartof>IEEE communications letters, 2018-01, Vol.22 (1), p.9-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-cb4d297454bf339d54fb76552e65fcc46aa0cb7cb747c47bfaf8eb9d705e55093</citedby><cites>FETCH-LOGICAL-c267t-cb4d297454bf339d54fb76552e65fcc46aa0cb7cb747c47bfaf8eb9d705e55093</cites><orcidid>0000-0002-0171-4721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7874123$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7874123$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tao, Xiongfei</creatorcontrib><creatorcontrib>Li, Yufei</creatorcontrib><creatorcontrib>Liu, Yonghe</creatorcontrib><creatorcontrib>Hu, Zuoqi</creatorcontrib><title>On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Low-density parity-check (LDPC) codes exhibit excellent error correcting capability. However, small trapping sets in the Tanner graph are harmful to the iterative decoding algorithm. In this letter, we present a method of constructing (3, n) girth-eight quasi-cyclic LDPC codes with low error floor by removing the small trapping sets from the Tanner graph. To address this issue, we analyze the relationship between eight-cycles and small trapping sets of Tanner graphs based on fully connected base graphs without parallel edges. We find that if some eight-cycles are not found in the Tanner graphs, any elementary trapping set in the range of a ≤ 8 and b ≤ 3 is removed naturally. We also derive a lower bound on the permutation size for the construction of such codes. The experimental simulation shows a favorable error rate performance with lower error floor over additive white Gaussian noise channels.</description><subject>Electronic mail</subject><subject>Error analysis</subject><subject>Indexes</subject><subject>Iterative decoding</subject><subject>low error floor</subject><subject>low-density parity-check (LDPC) codes</subject><subject>Signal to noise ratio</subject><subject>Trapping sets</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4MoOKdfQF_yBTqTNOk1j1LdFDombD6XJL1opWtHUh_27W3dEI674w-_4_gRcs_ZgnOmH8tis14vBOOwEBloYHBBZlypPBFjuxx3lusEQOfX5CbGb8ZYLhSfke2mo8MX0qLv4hB-3ND0He09LZ_fizGsMdJlQJyi7d60Ld0Fczg03Sfd4hCpPU7kEPq2nbLi6FqMt-TKmzbi3XnOycfyZVe8JuVm9VY8lYkbfxwSZ2UtNEglrU9TXSvpLWRKCcyUd05mxjBnYSwJToL1xudodQ1MoVJMp3MiTndd6GMM6KtDaPYmHCvOqklL9aelmrRUZy0j9HCCGkT8ByAHyUWa_gJGJV7N</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Tao, Xiongfei</creator><creator>Li, Yufei</creator><creator>Liu, Yonghe</creator><creator>Hu, Zuoqi</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0171-4721</orcidid></search><sort><creationdate>201801</creationdate><title>On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles</title><author>Tao, Xiongfei ; Li, Yufei ; Liu, Yonghe ; Hu, Zuoqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-cb4d297454bf339d54fb76552e65fcc46aa0cb7cb747c47bfaf8eb9d705e55093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Electronic mail</topic><topic>Error analysis</topic><topic>Indexes</topic><topic>Iterative decoding</topic><topic>low error floor</topic><topic>low-density parity-check (LDPC) codes</topic><topic>Signal to noise ratio</topic><topic>Trapping sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Xiongfei</creatorcontrib><creatorcontrib>Li, Yufei</creatorcontrib><creatorcontrib>Liu, Yonghe</creatorcontrib><creatorcontrib>Hu, Zuoqi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tao, Xiongfei</au><au>Li, Yufei</au><au>Liu, Yonghe</au><au>Hu, Zuoqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-01</date><risdate>2018</risdate><volume>22</volume><issue>1</issue><spage>9</spage><epage>12</epage><pages>9-12</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Low-density parity-check (LDPC) codes exhibit excellent error correcting capability. However, small trapping sets in the Tanner graph are harmful to the iterative decoding algorithm. In this letter, we present a method of constructing (3, n) girth-eight quasi-cyclic LDPC codes with low error floor by removing the small trapping sets from the Tanner graph. To address this issue, we analyze the relationship between eight-cycles and small trapping sets of Tanner graphs based on fully connected base graphs without parallel edges. We find that if some eight-cycles are not found in the Tanner graphs, any elementary trapping set in the range of a ≤ 8 and b ≤ 3 is removed naturally. We also derive a lower bound on the permutation size for the construction of such codes. The experimental simulation shows a favorable error rate performance with lower error floor over additive white Gaussian noise channels.</abstract><pub>IEEE</pub><doi>10.1109/LCOMM.2017.2679707</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0171-4721</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2018-01, Vol.22 (1), p.9-12
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2017_2679707
source IEEE Electronic Library (IEL)
subjects Electronic mail
Error analysis
Indexes
Iterative decoding
low error floor
low-density parity-check (LDPC) codes
Signal to noise ratio
Trapping sets
title On the Construction of LDPC Codes Free of Small Trapping Sets by Controlling Cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A30%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Construction%20of%20LDPC%20Codes%20Free%20of%20Small%20Trapping%20Sets%20by%20Controlling%20Cycles&rft.jtitle=IEEE%20communications%20letters&rft.au=Tao,%20Xiongfei&rft.date=2018-01&rft.volume=22&rft.issue=1&rft.spage=9&rft.epage=12&rft.pages=9-12&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2017.2679707&rft_dat=%3Ccrossref_RIE%3E10_1109_LCOMM_2017_2679707%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7874123&rfr_iscdi=true