Polar Code Design for Noisy Blackwell Channels

In this letter, we introduce a class of discrete memoryless broadcast channels, called noisy Blackwell channels, which generalize the Blackwell channel to include noise and to more than two users. We design the polar code for the noisy Blackwell channel based on Marton's coding scheme. We choos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2016-08, Vol.20 (8), p.1495-1498
Hauptverfasser: Zhao, Lanying, Choi, Sung-Ik, Chung, Sae-Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1498
container_issue 8
container_start_page 1495
container_title IEEE communications letters
container_volume 20
creator Zhao, Lanying
Choi, Sung-Ik
Chung, Sae-Young
description In this letter, we introduce a class of discrete memoryless broadcast channels, called noisy Blackwell channels, which generalize the Blackwell channel to include noise and to more than two users. We design the polar code for the noisy Blackwell channel based on Marton's coding scheme. We choose auxiliary random variables and the mapping from auxiliary random variables to the channel input, such that the sum-rate capacity can be achieved very closely. Furthermore, we show that the designed polar code can be applied to multi-level cell flash memories for improving random I/O performance. The simulation results demonstrate that our designed polar codes achieve good performance even for a large number of users.
doi_str_mv 10.1109/LCOMM.2016.2578318
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2016_2578318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7487044</ieee_id><sourcerecordid>4145195031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-85a3d84e9527f314e3bc20a4d5ca4a508018f35229333597e107a07fd04bf44c3</originalsourceid><addsrcrecordid>eNpdkLtOAzEQRS0EEiHwA9CsREOzy_gV2yUsTykhFFBbjteGDZs12IlQ_h6HRBQ0M1OcO7o6CJ1iqDAGdTmup5NJRQCPKsKFpFjuoQHmXJYkj_18g1SlEEoeoqOU5gAgCccDVD2HzsSiDo0rblxq3_rCh1g8hTati-vO2I9v13VF_W763nXpGB140yV3sttD9Hp3-1I_lOPp_WN9NS4tEWpZSm5oI5lTnAhPMXN0ZgkY1nBrmOEgAUtPOSGKUsqVcBiEAeEbYDPPmKVDdLH9-xnD18qlpV60yeYmpndhlTSWlI8IZ2yU0fN_6DysYp_bZSq7wYRQmSmypWwMKUXn9WdsFyauNQa9Uah_FeqNQr1TmENn21DrnPsLCCYFMEZ_ABJYabU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810912238</pqid></control><display><type>article</type><title>Polar Code Design for Noisy Blackwell Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Lanying ; Choi, Sung-Ik ; Chung, Sae-Young</creator><creatorcontrib>Zhao, Lanying ; Choi, Sung-Ik ; Chung, Sae-Young</creatorcontrib><description>In this letter, we introduce a class of discrete memoryless broadcast channels, called noisy Blackwell channels, which generalize the Blackwell channel to include noise and to more than two users. We design the polar code for the noisy Blackwell channel based on Marton's coding scheme. We choose auxiliary random variables and the mapping from auxiliary random variables to the channel input, such that the sum-rate capacity can be achieved very closely. Furthermore, we show that the designed polar code can be applied to multi-level cell flash memories for improving random I/O performance. The simulation results demonstrate that our designed polar codes achieve good performance even for a large number of users.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2016.2578318</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadcasting ; channel polarization ; Channels ; Coding ; Encoding ; Error probability ; Flash memory (computers) ; Indexes ; Interference ; Mapping ; Marton’s inner bound ; Noise ; Noise measurement ; Noisy Blackwell channel ; random I/O code ; Random variables ; Simulation ; Upper bound</subject><ispartof>IEEE communications letters, 2016-08, Vol.20 (8), p.1495-1498</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-85a3d84e9527f314e3bc20a4d5ca4a508018f35229333597e107a07fd04bf44c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7487044$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7487044$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Lanying</creatorcontrib><creatorcontrib>Choi, Sung-Ik</creatorcontrib><creatorcontrib>Chung, Sae-Young</creatorcontrib><title>Polar Code Design for Noisy Blackwell Channels</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>In this letter, we introduce a class of discrete memoryless broadcast channels, called noisy Blackwell channels, which generalize the Blackwell channel to include noise and to more than two users. We design the polar code for the noisy Blackwell channel based on Marton's coding scheme. We choose auxiliary random variables and the mapping from auxiliary random variables to the channel input, such that the sum-rate capacity can be achieved very closely. Furthermore, we show that the designed polar code can be applied to multi-level cell flash memories for improving random I/O performance. The simulation results demonstrate that our designed polar codes achieve good performance even for a large number of users.</description><subject>Broadcasting</subject><subject>channel polarization</subject><subject>Channels</subject><subject>Coding</subject><subject>Encoding</subject><subject>Error probability</subject><subject>Flash memory (computers)</subject><subject>Indexes</subject><subject>Interference</subject><subject>Mapping</subject><subject>Marton’s inner bound</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noisy Blackwell channel</subject><subject>random I/O code</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Upper bound</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLtOAzEQRS0EEiHwA9CsREOzy_gV2yUsTykhFFBbjteGDZs12IlQ_h6HRBQ0M1OcO7o6CJ1iqDAGdTmup5NJRQCPKsKFpFjuoQHmXJYkj_18g1SlEEoeoqOU5gAgCccDVD2HzsSiDo0rblxq3_rCh1g8hTati-vO2I9v13VF_W763nXpGB140yV3sttD9Hp3-1I_lOPp_WN9NS4tEWpZSm5oI5lTnAhPMXN0ZgkY1nBrmOEgAUtPOSGKUsqVcBiEAeEbYDPPmKVDdLH9-xnD18qlpV60yeYmpndhlTSWlI8IZ2yU0fN_6DysYp_bZSq7wYRQmSmypWwMKUXn9WdsFyauNQa9Uah_FeqNQr1TmENn21DrnPsLCCYFMEZ_ABJYabU</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Zhao, Lanying</creator><creator>Choi, Sung-Ik</creator><creator>Chung, Sae-Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201608</creationdate><title>Polar Code Design for Noisy Blackwell Channels</title><author>Zhao, Lanying ; Choi, Sung-Ik ; Chung, Sae-Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-85a3d84e9527f314e3bc20a4d5ca4a508018f35229333597e107a07fd04bf44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Broadcasting</topic><topic>channel polarization</topic><topic>Channels</topic><topic>Coding</topic><topic>Encoding</topic><topic>Error probability</topic><topic>Flash memory (computers)</topic><topic>Indexes</topic><topic>Interference</topic><topic>Mapping</topic><topic>Marton’s inner bound</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noisy Blackwell channel</topic><topic>random I/O code</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lanying</creatorcontrib><creatorcontrib>Choi, Sung-Ik</creatorcontrib><creatorcontrib>Chung, Sae-Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Lanying</au><au>Choi, Sung-Ik</au><au>Chung, Sae-Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polar Code Design for Noisy Blackwell Channels</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2016-08</date><risdate>2016</risdate><volume>20</volume><issue>8</issue><spage>1495</spage><epage>1498</epage><pages>1495-1498</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this letter, we introduce a class of discrete memoryless broadcast channels, called noisy Blackwell channels, which generalize the Blackwell channel to include noise and to more than two users. We design the polar code for the noisy Blackwell channel based on Marton's coding scheme. We choose auxiliary random variables and the mapping from auxiliary random variables to the channel input, such that the sum-rate capacity can be achieved very closely. Furthermore, we show that the designed polar code can be applied to multi-level cell flash memories for improving random I/O performance. The simulation results demonstrate that our designed polar codes achieve good performance even for a large number of users.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2016.2578318</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2016-08, Vol.20 (8), p.1495-1498
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2016_2578318
source IEEE Electronic Library (IEL)
subjects Broadcasting
channel polarization
Channels
Coding
Encoding
Error probability
Flash memory (computers)
Indexes
Interference
Mapping
Marton’s inner bound
Noise
Noise measurement
Noisy Blackwell channel
random I/O code
Random variables
Simulation
Upper bound
title Polar Code Design for Noisy Blackwell Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polar%20Code%20Design%20for%20Noisy%20Blackwell%20Channels&rft.jtitle=IEEE%20communications%20letters&rft.au=Zhao,%20Lanying&rft.date=2016-08&rft.volume=20&rft.issue=8&rft.spage=1495&rft.epage=1498&rft.pages=1495-1498&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2016.2578318&rft_dat=%3Cproquest_RIE%3E4145195031%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810912238&rft_id=info:pmid/&rft_ieee_id=7487044&rfr_iscdi=true