A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records

Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2015-03, Vol.19 (3), p.423-426
Hauptverfasser: Pulliyakode, Saishankar Katri, Kalyani, Sheetal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 3
container_start_page 423
container_title IEEE communications letters
container_volume 19
creator Pulliyakode, Saishankar Katri
Kalyani, Sheetal
description Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction.
doi_str_mv 10.1109/LCOMM.2014.2385088
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2014_2385088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6994744</ieee_id><sourcerecordid>3623503981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00cT14-5x2SfCZMIGIrJux7UAJTLEdFv57BzFuzr2Lc-49-RC6JTAiBPTDdDKrqhEFwkeUKQFKnaEBEUIVtJfzfgeli7LU6hJd5bwBAEUFGaD5GFfRhSZ4h-fzCo-3q5hCt97hJiY8a7eh9Xjhvw6-tR7Pk3fBdiG2eJlDu8KLdUwdfqy7Gr97G5PL1-iiqbfZ3_zNIVo-P31MXovp7OVtMp4WlmrRFQ6E57IkYLWQjlAqtZONcg1pOLGfJWNW8tqDBqYlEZJZUddge2XCOe3ZEN2f7u5T7NvlzmziIbX9S0OkZAx4SWnvoieXTTHn5BuzT2FXp29DwBzJmV9y5kjO_JHrQ3enUPDe_wek1rzknP0Alo1oug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663304722</pqid></control><display><type>article</type><title>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</title><source>IEEE Electronic Library (IEL)</source><creator>Pulliyakode, Saishankar Katri ; Kalyani, Sheetal</creator><creatorcontrib>Pulliyakode, Saishankar Katri ; Kalyani, Sheetal</creatorcontrib><description>Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2014.2385088</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Computational modeling ; Context ; Markov processes ; Prediction algorithms ; Predictive models ; Vectors</subject><ispartof>IEEE communications letters, 2015-03, Vol.19 (3), p.423-426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</citedby><cites>FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6994744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6994744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pulliyakode, Saishankar Katri</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><title>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction.</description><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>Context</subject><subject>Markov processes</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Vectors</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-Ad00cT14-5x2SfCZMIGIrJux7UAJTLEdFv57BzFuzr2Lc-49-RC6JTAiBPTDdDKrqhEFwkeUKQFKnaEBEUIVtJfzfgeli7LU6hJd5bwBAEUFGaD5GFfRhSZ4h-fzCo-3q5hCt97hJiY8a7eh9Xjhvw6-tR7Pk3fBdiG2eJlDu8KLdUwdfqy7Gr97G5PL1-iiqbfZ3_zNIVo-P31MXovp7OVtMp4WlmrRFQ6E57IkYLWQjlAqtZONcg1pOLGfJWNW8tqDBqYlEZJZUddge2XCOe3ZEN2f7u5T7NvlzmziIbX9S0OkZAx4SWnvoieXTTHn5BuzT2FXp29DwBzJmV9y5kjO_JHrQ3enUPDe_wek1rzknP0Alo1oug</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Pulliyakode, Saishankar Katri</creator><creator>Kalyani, Sheetal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</title><author>Pulliyakode, Saishankar Katri ; Kalyani, Sheetal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>Context</topic><topic>Markov processes</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pulliyakode, Saishankar Katri</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pulliyakode, Saishankar Katri</au><au>Kalyani, Sheetal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2015-03</date><risdate>2015</risdate><volume>19</volume><issue>3</issue><spage>423</spage><epage>426</epage><pages>423-426</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2014.2385088</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2015-03, Vol.19 (3), p.423-426
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2014_2385088
source IEEE Electronic Library (IEL)
subjects Adaptation models
Computational modeling
Context
Markov processes
Prediction algorithms
Predictive models
Vectors
title A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20PPM%20Algorithm%20for%20Online%20Sequence%20Prediction%20Using%20Short%20Data%20Records&rft.jtitle=IEEE%20communications%20letters&rft.au=Pulliyakode,%20Saishankar%20Katri&rft.date=2015-03&rft.volume=19&rft.issue=3&rft.spage=423&rft.epage=426&rft.pages=423-426&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2014.2385088&rft_dat=%3Cproquest_RIE%3E3623503981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663304722&rft_id=info:pmid/&rft_ieee_id=6994744&rfr_iscdi=true