A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records
Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2015-03, Vol.19 (3), p.423-426 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 3 |
container_start_page | 423 |
container_title | IEEE communications letters |
container_volume | 19 |
creator | Pulliyakode, Saishankar Katri Kalyani, Sheetal |
description | Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction. |
doi_str_mv | 10.1109/LCOMM.2014.2385088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2014_2385088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6994744</ieee_id><sourcerecordid>3623503981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYj-Ad00cT14-5x2SfCZMIGIrJux7UAJTLEdFv57BzFuzr2Lc-49-RC6JTAiBPTDdDKrqhEFwkeUKQFKnaEBEUIVtJfzfgeli7LU6hJd5bwBAEUFGaD5GFfRhSZ4h-fzCo-3q5hCt97hJiY8a7eh9Xjhvw6-tR7Pk3fBdiG2eJlDu8KLdUwdfqy7Gr97G5PL1-iiqbfZ3_zNIVo-P31MXovp7OVtMp4WlmrRFQ6E57IkYLWQjlAqtZONcg1pOLGfJWNW8tqDBqYlEZJZUddge2XCOe3ZEN2f7u5T7NvlzmziIbX9S0OkZAx4SWnvoieXTTHn5BuzT2FXp29DwBzJmV9y5kjO_JHrQ3enUPDe_wek1rzknP0Alo1oug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1663304722</pqid></control><display><type>article</type><title>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</title><source>IEEE Electronic Library (IEL)</source><creator>Pulliyakode, Saishankar Katri ; Kalyani, Sheetal</creator><creatorcontrib>Pulliyakode, Saishankar Katri ; Kalyani, Sheetal</creatorcontrib><description>Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2014.2385088</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Computational modeling ; Context ; Markov processes ; Prediction algorithms ; Predictive models ; Vectors</subject><ispartof>IEEE communications letters, 2015-03, Vol.19 (3), p.423-426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</citedby><cites>FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6994744$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6994744$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pulliyakode, Saishankar Katri</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><title>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction.</description><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>Context</subject><subject>Markov processes</subject><subject>Prediction algorithms</subject><subject>Predictive models</subject><subject>Vectors</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPAjEUhRujiYj-Ad00cT14-5x2SfCZMIGIrJux7UAJTLEdFv57BzFuzr2Lc-49-RC6JTAiBPTDdDKrqhEFwkeUKQFKnaEBEUIVtJfzfgeli7LU6hJd5bwBAEUFGaD5GFfRhSZ4h-fzCo-3q5hCt97hJiY8a7eh9Xjhvw6-tR7Pk3fBdiG2eJlDu8KLdUwdfqy7Gr97G5PL1-iiqbfZ3_zNIVo-P31MXovp7OVtMp4WlmrRFQ6E57IkYLWQjlAqtZONcg1pOLGfJWNW8tqDBqYlEZJZUddge2XCOe3ZEN2f7u5T7NvlzmziIbX9S0OkZAx4SWnvoieXTTHn5BuzT2FXp29DwBzJmV9y5kjO_JHrQ3enUPDe_wek1rzknP0Alo1oug</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Pulliyakode, Saishankar Katri</creator><creator>Kalyani, Sheetal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201503</creationdate><title>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</title><author>Pulliyakode, Saishankar Katri ; Kalyani, Sheetal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d05e46710c956d12269d6f8df1f41cb733c64ae0903961563c5aa0cc5a35dd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>Context</topic><topic>Markov processes</topic><topic>Prediction algorithms</topic><topic>Predictive models</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pulliyakode, Saishankar Katri</creatorcontrib><creatorcontrib>Kalyani, Sheetal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pulliyakode, Saishankar Katri</au><au>Kalyani, Sheetal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2015-03</date><risdate>2015</risdate><volume>19</volume><issue>3</issue><spage>423</spage><epage>426</epage><pages>423-426</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Discrete sequence prediction using source encoding techniques, generally involves two steps - (a) building frequency trees and (b) computing distributions using frequency trees to perform prediction. The second step is usually performed by a technique called Prediction by Partial Match (PPM) and its variants. The implicit assumption in PPM is that using frequency trees of greater depth results in better prediction. In this paper, we question that assumption especially when one has access only to small sequence lengths, since extracting information from longer contexts typically involves estimating a higher number of parameters. We propose a modified PPM algorithm, where, the different context based predictors are weighed according to their prediction accuracy and prediction is performed based on a combined model. We finally apply the algorithms on a well-known location prediction data-set and prove the efficacy of the algorithm proposed by us and its utility in location prediction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2014.2385088</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2015-03, Vol.19 (3), p.423-426 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCOMM_2014_2385088 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Computational modeling Context Markov processes Prediction algorithms Predictive models Vectors |
title | A Modified PPM Algorithm for Online Sequence Prediction Using Short Data Records |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modified%20PPM%20Algorithm%20for%20Online%20Sequence%20Prediction%20Using%20Short%20Data%20Records&rft.jtitle=IEEE%20communications%20letters&rft.au=Pulliyakode,%20Saishankar%20Katri&rft.date=2015-03&rft.volume=19&rft.issue=3&rft.spage=423&rft.epage=426&rft.pages=423-426&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2014.2385088&rft_dat=%3Cproquest_RIE%3E3623503981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1663304722&rft_id=info:pmid/&rft_ieee_id=6994744&rfr_iscdi=true |