A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise

The letter presents a new algorithm for the precise estimation of the frequency of a complex exponential signal in additive, complex, white Gaussian noise. The discrete Fourier transform (DFT)-based algorithm performs a frequency interpolation on the results of an N point complex fast Fourier transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2003-11, Vol.7 (11), p.549-551
Hauptverfasser: Reisenfeld, S., Aboutanios, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 11
container_start_page 549
container_title IEEE communications letters
container_volume 7
creator Reisenfeld, S.
Aboutanios, E.
description The letter presents a new algorithm for the precise estimation of the frequency of a complex exponential signal in additive, complex, white Gaussian noise. The discrete Fourier transform (DFT)-based algorithm performs a frequency interpolation on the results of an N point complex fast Fourier transform. For large N and large signal to noise ratio, the frequency estimation error variance obtained is 0.063 dB above the Cramer-Rao bound. The algorithm has low computational complexity and is well suited for real time digital signal processing applications, including communications, radar and sonar.
doi_str_mv 10.1109/LCOMM.2003.815637
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCOMM_2003_815637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1246052</ieee_id><sourcerecordid>28511204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-ab2ebd87e13a55f9b1a3c4b97126a1d34d56a8a1202acf4e95bfd0e0828b3f23</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhhdRsH78APESPOhpaz42u8mxFK1CpRfvIbs70cg2qclW239vthUED-JlZhieGd6ZN8suCB4TguXtfLp4ehpTjNlYEF6y6iAbEc5FTlM4TDUWMq8qKY6zkxjfMMaCcjLKXibIwSfS3YsPtn9dIuMD6l8BQeztUvfWO-TNrmMCvK_BNduhoVHjl6sONgg2K-_A9VZ3yDqk29b29gPQTK9jtNoh522Es-zI6C7C-Xc-zZ7v756nD_l8MXucTuZ5w0TR57qmULeiAsI050bWRLOmqGVFaKlJy4qWl1poQjHVjSlA8tq0GNIxomaGstPsZr92FXwSG3u1tLGBrtMO_DoqiUmFS44H8vpPkgop0x_FP0BOkp4igVe_wDe_Di5dq4QoOOVMDhDZQ03wMQYwahXSn8NWEawGJ9XOSTU4qfZOppnL_YwFgB-eFiXmlH0BDm-aZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884525394</pqid></control><display><type>article</type><title>A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise</title><source>IEEE Electronic Library (IEL)</source><creator>Reisenfeld, S. ; Aboutanios, E.</creator><creatorcontrib>Reisenfeld, S. ; Aboutanios, E.</creatorcontrib><description>The letter presents a new algorithm for the precise estimation of the frequency of a complex exponential signal in additive, complex, white Gaussian noise. The discrete Fourier transform (DFT)-based algorithm performs a frequency interpolation on the results of an N point complex fast Fourier transform. For large N and large signal to noise ratio, the frequency estimation error variance obtained is 0.063 dB above the Cramer-Rao bound. The algorithm has low computational complexity and is well suited for real time digital signal processing applications, including communications, radar and sonar.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2003.815637</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Additive noise ; Additives ; Algorithms ; Computational complexity ; Cramer-Rao bounds ; Digital signal processing ; Discrete Fourier transforms ; Fast Fourier transforms ; Fourier transforms ; Frequency estimation ; Gaussian ; Gaussian noise ; Interpolation ; Noise ; Signal processing algorithms ; Signal to noise ratio ; Sonar</subject><ispartof>IEEE communications letters, 2003-11, Vol.7 (11), p.549-551</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-ab2ebd87e13a55f9b1a3c4b97126a1d34d56a8a1202acf4e95bfd0e0828b3f23</citedby><cites>FETCH-LOGICAL-c384t-ab2ebd87e13a55f9b1a3c4b97126a1d34d56a8a1202acf4e95bfd0e0828b3f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1246052$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1246052$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Reisenfeld, S.</creatorcontrib><creatorcontrib>Aboutanios, E.</creatorcontrib><title>A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>The letter presents a new algorithm for the precise estimation of the frequency of a complex exponential signal in additive, complex, white Gaussian noise. The discrete Fourier transform (DFT)-based algorithm performs a frequency interpolation on the results of an N point complex fast Fourier transform. For large N and large signal to noise ratio, the frequency estimation error variance obtained is 0.063 dB above the Cramer-Rao bound. The algorithm has low computational complexity and is well suited for real time digital signal processing applications, including communications, radar and sonar.</description><subject>Additive noise</subject><subject>Additives</subject><subject>Algorithms</subject><subject>Computational complexity</subject><subject>Cramer-Rao bounds</subject><subject>Digital signal processing</subject><subject>Discrete Fourier transforms</subject><subject>Fast Fourier transforms</subject><subject>Fourier transforms</subject><subject>Frequency estimation</subject><subject>Gaussian</subject><subject>Gaussian noise</subject><subject>Interpolation</subject><subject>Noise</subject><subject>Signal processing algorithms</subject><subject>Signal to noise ratio</subject><subject>Sonar</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkU1LAzEQhhdRsH78APESPOhpaz42u8mxFK1CpRfvIbs70cg2qclW239vthUED-JlZhieGd6ZN8suCB4TguXtfLp4ehpTjNlYEF6y6iAbEc5FTlM4TDUWMq8qKY6zkxjfMMaCcjLKXibIwSfS3YsPtn9dIuMD6l8BQeztUvfWO-TNrmMCvK_BNduhoVHjl6sONgg2K-_A9VZ3yDqk29b29gPQTK9jtNoh522Es-zI6C7C-Xc-zZ7v756nD_l8MXucTuZ5w0TR57qmULeiAsI050bWRLOmqGVFaKlJy4qWl1poQjHVjSlA8tq0GNIxomaGstPsZr92FXwSG3u1tLGBrtMO_DoqiUmFS44H8vpPkgop0x_FP0BOkp4igVe_wDe_Di5dq4QoOOVMDhDZQ03wMQYwahXSn8NWEawGJ9XOSTU4qfZOppnL_YwFgB-eFiXmlH0BDm-aZg</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Reisenfeld, S.</creator><creator>Aboutanios, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20031101</creationdate><title>A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise</title><author>Reisenfeld, S. ; Aboutanios, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-ab2ebd87e13a55f9b1a3c4b97126a1d34d56a8a1202acf4e95bfd0e0828b3f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Additive noise</topic><topic>Additives</topic><topic>Algorithms</topic><topic>Computational complexity</topic><topic>Cramer-Rao bounds</topic><topic>Digital signal processing</topic><topic>Discrete Fourier transforms</topic><topic>Fast Fourier transforms</topic><topic>Fourier transforms</topic><topic>Frequency estimation</topic><topic>Gaussian</topic><topic>Gaussian noise</topic><topic>Interpolation</topic><topic>Noise</topic><topic>Signal processing algorithms</topic><topic>Signal to noise ratio</topic><topic>Sonar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reisenfeld, S.</creatorcontrib><creatorcontrib>Aboutanios, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Reisenfeld, S.</au><au>Aboutanios, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2003-11-01</date><risdate>2003</risdate><volume>7</volume><issue>11</issue><spage>549</spage><epage>551</epage><pages>549-551</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>The letter presents a new algorithm for the precise estimation of the frequency of a complex exponential signal in additive, complex, white Gaussian noise. The discrete Fourier transform (DFT)-based algorithm performs a frequency interpolation on the results of an N point complex fast Fourier transform. For large N and large signal to noise ratio, the frequency estimation error variance obtained is 0.063 dB above the Cramer-Rao bound. The algorithm has low computational complexity and is well suited for real time digital signal processing applications, including communications, radar and sonar.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2003.815637</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2003-11, Vol.7 (11), p.549-551
issn 1089-7798
1558-2558
language eng
recordid cdi_crossref_primary_10_1109_LCOMM_2003_815637
source IEEE Electronic Library (IEL)
subjects Additive noise
Additives
Algorithms
Computational complexity
Cramer-Rao bounds
Digital signal processing
Discrete Fourier transforms
Fast Fourier transforms
Fourier transforms
Frequency estimation
Gaussian
Gaussian noise
Interpolation
Noise
Signal processing algorithms
Signal to noise ratio
Sonar
title A new algorithm for the estimation of the frequency of a complex exponential in additive Gaussian noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20algorithm%20for%20the%20estimation%20of%20the%20frequency%20of%20a%20complex%20exponential%20in%20additive%20Gaussian%20noise&rft.jtitle=IEEE%20communications%20letters&rft.au=Reisenfeld,%20S.&rft.date=2003-11-01&rft.volume=7&rft.issue=11&rft.spage=549&rft.epage=551&rft.pages=549-551&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2003.815637&rft_dat=%3Cproquest_RIE%3E28511204%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884525394&rft_id=info:pmid/&rft_ieee_id=1246052&rfr_iscdi=true