SoCurity: A Design Approach for Enhancing SoC Security
Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC secur...
Gespeichert in:
Veröffentlicht in: | IEEE computer architecture letters 2023-07, Vol.22 (2), p.1-4 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE computer architecture letters |
container_volume | 22 |
creator | Hossain, Naorin Buyuktosunoglu, Alper Wellman, John-David Bose, Pradip Martonosi, Margaret |
description | Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy. |
doi_str_mv | 10.1109/LCA.2023.3301448 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCA_2023_3301448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207806</ieee_id><sourcerecordid>2859714481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-c21cb7d6d73aa3cbc3e8c8f8b915473619f2488497b593798b1dd2baee9f9d023</originalsourceid><addsrcrecordid>eNpNkLtPwzAQxi0EEqWwMzBYYm7x-8EWhfKQIjEUZstxnDYVJMFuhv73dUiFWO5u-H13930A3GK0xBjphyLPlgQRuqQUYcbUGZhhzsVCIMHO_2YuLsFVjDuEmKCKzYBYd_kQmv3hEWbwycdm08Ks70Nn3RbWXYCrdmtb17QbmEi49u6XvgYXtf2K_ubU5-DzefWRvy6K95e3PCsWjjC-TxW7UlaiktRa6kpHvXKqVqXGnEkqsK4JU4ppWXJNpVYlripSWu91ravkZg7up73po5_Bx73ZdUNo00lDFNdydIoThSbKhS7G4GvTh-bbhoPByIzpmJSOGdMxp3SS5G6SNN77fzhBUiFBj5GsXno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859714481</pqid></control><display><type>article</type><title>SoCurity: A Design Approach for Enhancing SoC Security</title><source>IEEE Electronic Library (IEL)</source><creator>Hossain, Naorin ; Buyuktosunoglu, Alper ; Wellman, John-David ; Bose, Pradip ; Martonosi, Margaret</creator><creatorcontrib>Hossain, Naorin ; Buyuktosunoglu, Alper ; Wellman, John-David ; Bose, Pradip ; Martonosi, Margaret</creatorcontrib><description>Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy.</description><identifier>ISSN: 1556-6056</identifier><identifier>EISSN: 1556-6064</identifier><identifier>DOI: 10.1109/LCA.2023.3301448</identifier><identifier>CODEN: ICALC3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Computational modeling ; Data models ; denial-of-service ; Hardware ; Heterogeneous SoC ; Machine learning ; Monitoring ; network-on-chip ; Security ; Semi-supervised learning ; semi-supervised model ; Task analysis</subject><ispartof>IEEE computer architecture letters, 2023-07, Vol.22 (2), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-c21cb7d6d73aa3cbc3e8c8f8b915473619f2488497b593798b1dd2baee9f9d023</cites><orcidid>0000-0001-9683-8032 ; 0000-0002-1380-5671 ; 0009-0006-6817-1545 ; 0000-0002-5341-8916 ; 0000-0003-0223-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10207806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hossain, Naorin</creatorcontrib><creatorcontrib>Buyuktosunoglu, Alper</creatorcontrib><creatorcontrib>Wellman, John-David</creatorcontrib><creatorcontrib>Bose, Pradip</creatorcontrib><creatorcontrib>Martonosi, Margaret</creatorcontrib><title>SoCurity: A Design Approach for Enhancing SoC Security</title><title>IEEE computer architecture letters</title><addtitle>LCA</addtitle><description>Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>denial-of-service</subject><subject>Hardware</subject><subject>Heterogeneous SoC</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>network-on-chip</subject><subject>Security</subject><subject>Semi-supervised learning</subject><subject>semi-supervised model</subject><subject>Task analysis</subject><issn>1556-6056</issn><issn>1556-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtPwzAQxi0EEqWwMzBYYm7x-8EWhfKQIjEUZstxnDYVJMFuhv73dUiFWO5u-H13930A3GK0xBjphyLPlgQRuqQUYcbUGZhhzsVCIMHO_2YuLsFVjDuEmKCKzYBYd_kQmv3hEWbwycdm08Ks70Nn3RbWXYCrdmtb17QbmEi49u6XvgYXtf2K_ubU5-DzefWRvy6K95e3PCsWjjC-TxW7UlaiktRa6kpHvXKqVqXGnEkqsK4JU4ppWXJNpVYlripSWu91ravkZg7up73po5_Bx73ZdUNo00lDFNdydIoThSbKhS7G4GvTh-bbhoPByIzpmJSOGdMxp3SS5G6SNN77fzhBUiFBj5GsXno</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Hossain, Naorin</creator><creator>Buyuktosunoglu, Alper</creator><creator>Wellman, John-David</creator><creator>Bose, Pradip</creator><creator>Martonosi, Margaret</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9683-8032</orcidid><orcidid>https://orcid.org/0000-0002-1380-5671</orcidid><orcidid>https://orcid.org/0009-0006-6817-1545</orcidid><orcidid>https://orcid.org/0000-0002-5341-8916</orcidid><orcidid>https://orcid.org/0000-0003-0223-7792</orcidid></search><sort><creationdate>20230701</creationdate><title>SoCurity: A Design Approach for Enhancing SoC Security</title><author>Hossain, Naorin ; Buyuktosunoglu, Alper ; Wellman, John-David ; Bose, Pradip ; Martonosi, Margaret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-c21cb7d6d73aa3cbc3e8c8f8b915473619f2488497b593798b1dd2baee9f9d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>denial-of-service</topic><topic>Hardware</topic><topic>Heterogeneous SoC</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>network-on-chip</topic><topic>Security</topic><topic>Semi-supervised learning</topic><topic>semi-supervised model</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Naorin</creatorcontrib><creatorcontrib>Buyuktosunoglu, Alper</creatorcontrib><creatorcontrib>Wellman, John-David</creatorcontrib><creatorcontrib>Bose, Pradip</creatorcontrib><creatorcontrib>Martonosi, Margaret</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE computer architecture letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hossain, Naorin</au><au>Buyuktosunoglu, Alper</au><au>Wellman, John-David</au><au>Bose, Pradip</au><au>Martonosi, Margaret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SoCurity: A Design Approach for Enhancing SoC Security</atitle><jtitle>IEEE computer architecture letters</jtitle><stitle>LCA</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1556-6056</issn><eissn>1556-6064</eissn><coden>ICALC3</coden><abstract>Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCA.2023.3301448</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9683-8032</orcidid><orcidid>https://orcid.org/0000-0002-1380-5671</orcidid><orcidid>https://orcid.org/0009-0006-6817-1545</orcidid><orcidid>https://orcid.org/0000-0002-5341-8916</orcidid><orcidid>https://orcid.org/0000-0003-0223-7792</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6056 |
ispartof | IEEE computer architecture letters, 2023-07, Vol.22 (2), p.1-4 |
issn | 1556-6056 1556-6064 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCA_2023_3301448 |
source | IEEE Electronic Library (IEL) |
subjects | Anomalies Anomaly detection Computational modeling Data models denial-of-service Hardware Heterogeneous SoC Machine learning Monitoring network-on-chip Security Semi-supervised learning semi-supervised model Task analysis |
title | SoCurity: A Design Approach for Enhancing SoC Security |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SoCurity:%20A%20Design%20Approach%20for%20Enhancing%20SoC%20Security&rft.jtitle=IEEE%20computer%20architecture%20letters&rft.au=Hossain,%20Naorin&rft.date=2023-07-01&rft.volume=22&rft.issue=2&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1556-6056&rft.eissn=1556-6064&rft.coden=ICALC3&rft_id=info:doi/10.1109/LCA.2023.3301448&rft_dat=%3Cproquest_RIE%3E2859714481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859714481&rft_id=info:pmid/&rft_ieee_id=10207806&rfr_iscdi=true |