SoCurity: A Design Approach for Enhancing SoC Security

Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC secur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE computer architecture letters 2023-07, Vol.22 (2), p.1-4
Hauptverfasser: Hossain, Naorin, Buyuktosunoglu, Alper, Wellman, John-David, Bose, Pradip, Martonosi, Margaret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue 2
container_start_page 1
container_title IEEE computer architecture letters
container_volume 22
creator Hossain, Naorin
Buyuktosunoglu, Alper
Wellman, John-David
Bose, Pradip
Martonosi, Margaret
description Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy.
doi_str_mv 10.1109/LCA.2023.3301448
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCA_2023_3301448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10207806</ieee_id><sourcerecordid>2859714481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-c21cb7d6d73aa3cbc3e8c8f8b915473619f2488497b593798b1dd2baee9f9d023</originalsourceid><addsrcrecordid>eNpNkLtPwzAQxi0EEqWwMzBYYm7x-8EWhfKQIjEUZstxnDYVJMFuhv73dUiFWO5u-H13930A3GK0xBjphyLPlgQRuqQUYcbUGZhhzsVCIMHO_2YuLsFVjDuEmKCKzYBYd_kQmv3hEWbwycdm08Ks70Nn3RbWXYCrdmtb17QbmEi49u6XvgYXtf2K_ubU5-DzefWRvy6K95e3PCsWjjC-TxW7UlaiktRa6kpHvXKqVqXGnEkqsK4JU4ppWXJNpVYlripSWu91ravkZg7up73po5_Bx73ZdUNo00lDFNdydIoThSbKhS7G4GvTh-bbhoPByIzpmJSOGdMxp3SS5G6SNN77fzhBUiFBj5GsXno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859714481</pqid></control><display><type>article</type><title>SoCurity: A Design Approach for Enhancing SoC Security</title><source>IEEE Electronic Library (IEL)</source><creator>Hossain, Naorin ; Buyuktosunoglu, Alper ; Wellman, John-David ; Bose, Pradip ; Martonosi, Margaret</creator><creatorcontrib>Hossain, Naorin ; Buyuktosunoglu, Alper ; Wellman, John-David ; Bose, Pradip ; Martonosi, Margaret</creatorcontrib><description>Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy.</description><identifier>ISSN: 1556-6056</identifier><identifier>EISSN: 1556-6064</identifier><identifier>DOI: 10.1109/LCA.2023.3301448</identifier><identifier>CODEN: ICALC3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; Computational modeling ; Data models ; denial-of-service ; Hardware ; Heterogeneous SoC ; Machine learning ; Monitoring ; network-on-chip ; Security ; Semi-supervised learning ; semi-supervised model ; Task analysis</subject><ispartof>IEEE computer architecture letters, 2023-07, Vol.22 (2), p.1-4</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-c21cb7d6d73aa3cbc3e8c8f8b915473619f2488497b593798b1dd2baee9f9d023</cites><orcidid>0000-0001-9683-8032 ; 0000-0002-1380-5671 ; 0009-0006-6817-1545 ; 0000-0002-5341-8916 ; 0000-0003-0223-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10207806$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10207806$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hossain, Naorin</creatorcontrib><creatorcontrib>Buyuktosunoglu, Alper</creatorcontrib><creatorcontrib>Wellman, John-David</creatorcontrib><creatorcontrib>Bose, Pradip</creatorcontrib><creatorcontrib>Martonosi, Margaret</creatorcontrib><title>SoCurity: A Design Approach for Enhancing SoC Security</title><title>IEEE computer architecture letters</title><addtitle>LCA</addtitle><description>Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>denial-of-service</subject><subject>Hardware</subject><subject>Heterogeneous SoC</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>network-on-chip</subject><subject>Security</subject><subject>Semi-supervised learning</subject><subject>semi-supervised model</subject><subject>Task analysis</subject><issn>1556-6056</issn><issn>1556-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtPwzAQxi0EEqWwMzBYYm7x-8EWhfKQIjEUZstxnDYVJMFuhv73dUiFWO5u-H13930A3GK0xBjphyLPlgQRuqQUYcbUGZhhzsVCIMHO_2YuLsFVjDuEmKCKzYBYd_kQmv3hEWbwycdm08Ks70Nn3RbWXYCrdmtb17QbmEi49u6XvgYXtf2K_ubU5-DzefWRvy6K95e3PCsWjjC-TxW7UlaiktRa6kpHvXKqVqXGnEkqsK4JU4ppWXJNpVYlripSWu91ravkZg7up73po5_Bx73ZdUNo00lDFNdydIoThSbKhS7G4GvTh-bbhoPByIzpmJSOGdMxp3SS5G6SNN77fzhBUiFBj5GsXno</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Hossain, Naorin</creator><creator>Buyuktosunoglu, Alper</creator><creator>Wellman, John-David</creator><creator>Bose, Pradip</creator><creator>Martonosi, Margaret</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9683-8032</orcidid><orcidid>https://orcid.org/0000-0002-1380-5671</orcidid><orcidid>https://orcid.org/0009-0006-6817-1545</orcidid><orcidid>https://orcid.org/0000-0002-5341-8916</orcidid><orcidid>https://orcid.org/0000-0003-0223-7792</orcidid></search><sort><creationdate>20230701</creationdate><title>SoCurity: A Design Approach for Enhancing SoC Security</title><author>Hossain, Naorin ; Buyuktosunoglu, Alper ; Wellman, John-David ; Bose, Pradip ; Martonosi, Margaret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-c21cb7d6d73aa3cbc3e8c8f8b915473619f2488497b593798b1dd2baee9f9d023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>denial-of-service</topic><topic>Hardware</topic><topic>Heterogeneous SoC</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>network-on-chip</topic><topic>Security</topic><topic>Semi-supervised learning</topic><topic>semi-supervised model</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hossain, Naorin</creatorcontrib><creatorcontrib>Buyuktosunoglu, Alper</creatorcontrib><creatorcontrib>Wellman, John-David</creatorcontrib><creatorcontrib>Bose, Pradip</creatorcontrib><creatorcontrib>Martonosi, Margaret</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE computer architecture letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hossain, Naorin</au><au>Buyuktosunoglu, Alper</au><au>Wellman, John-David</au><au>Bose, Pradip</au><au>Martonosi, Margaret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SoCurity: A Design Approach for Enhancing SoC Security</atitle><jtitle>IEEE computer architecture letters</jtitle><stitle>LCA</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1556-6056</issn><eissn>1556-6064</eissn><coden>ICALC3</coden><abstract>Heterogeneous systems-on-a-chip (SoCs) are increasingly used to meet low-power, high-performance computational requirements but are vulnerable to on-chip resource availability attacks. We propose SoCurity, the first NoC counter-based hardware monitoring approach for enhancing heterogeneous SoC security. With SoCurity, we develop a fast, lightweight anomalous activity detection system leveraging semi-supervised machine learning models that require no prior attack knowledge for detecting anomalies. This design choice provides protection against existing and novel future attacks on SoC resource availability. We demonstrate our techniques with a case study on a real SoC for a connected autonomous vehicle system and find up to 96% detection accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCA.2023.3301448</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9683-8032</orcidid><orcidid>https://orcid.org/0000-0002-1380-5671</orcidid><orcidid>https://orcid.org/0009-0006-6817-1545</orcidid><orcidid>https://orcid.org/0000-0002-5341-8916</orcidid><orcidid>https://orcid.org/0000-0003-0223-7792</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6056
ispartof IEEE computer architecture letters, 2023-07, Vol.22 (2), p.1-4
issn 1556-6056
1556-6064
language eng
recordid cdi_crossref_primary_10_1109_LCA_2023_3301448
source IEEE Electronic Library (IEL)
subjects Anomalies
Anomaly detection
Computational modeling
Data models
denial-of-service
Hardware
Heterogeneous SoC
Machine learning
Monitoring
network-on-chip
Security
Semi-supervised learning
semi-supervised model
Task analysis
title SoCurity: A Design Approach for Enhancing SoC Security
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SoCurity:%20A%20Design%20Approach%20for%20Enhancing%20SoC%20Security&rft.jtitle=IEEE%20computer%20architecture%20letters&rft.au=Hossain,%20Naorin&rft.date=2023-07-01&rft.volume=22&rft.issue=2&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1556-6056&rft.eissn=1556-6064&rft.coden=ICALC3&rft_id=info:doi/10.1109/LCA.2023.3301448&rft_dat=%3Cproquest_RIE%3E2859714481%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2859714481&rft_id=info:pmid/&rft_ieee_id=10207806&rfr_iscdi=true