SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD
Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading compu...
Gespeichert in:
Veröffentlicht in: | IEEE computer architecture letters 2020-07, Vol.19 (2), p.110-113 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113 |
---|---|
container_issue | 2 |
container_start_page | 110 |
container_title | IEEE computer architecture letters |
container_volume | 19 |
creator | Lee, Joo Hwan Zhang, Hui Lagrange, Veronica Krishnamoorthy, Praveen Zhao, Xiaodong Ki, Yang Seok |
description | Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach. |
doi_str_mv | 10.1109/LCA.2020.3009347 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCA_2020_3009347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9141369</ieee_id><sourcerecordid>2431701604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89aZJJtsBA9La6tQVFg9hzQ7Ky21W5Ptof_eLS2eZg7f-5h5jN0ijBDBPszH5UiAgJEEsFKZMzbAPNeZBq3O__dcX7KrlFYASstCDdhT9eNjV1WTRz79mJW8DIHWFH1HNX8jH7Oqa6P_Jj7xneflxq_33TIk3m54D12zi8avE92c5pB9TZ8_xy_Z_H32Oi7nWZAau6zIhWowoFeLRueIGmvjvQgkm1r7wgpDdWOsNouFCuTBSGFEsORVURuLhRyy-2PvNra_O0qdW7W72B-TnFASDaAG1afgmAqxTSlS47Zx2b-3dwjuIMn1ktxBkjtJ6pG7I7Ikov-4RYVSW_kHSyxfxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701604</pqid></control><display><type>article</type><title>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Joo Hwan ; Zhang, Hui ; Lagrange, Veronica ; Krishnamoorthy, Praveen ; Zhao, Xiaodong ; Ki, Yang Seok</creator><creatorcontrib>Lee, Joo Hwan ; Zhang, Hui ; Lagrange, Veronica ; Krishnamoorthy, Praveen ; Zhao, Xiaodong ; Ki, Yang Seok</creatorcontrib><description>Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach.</description><identifier>ISSN: 1556-6056</identifier><identifier>EISSN: 1556-6064</identifier><identifier>DOI: 10.1109/LCA.2020.3009347</identifier><identifier>CODEN: ICALC3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Computation offloading ; Data analysis ; data analytics ; Field programmable gate arrays ; IP networks ; Mathematical analysis ; parquet ; Performance evaluation ; Pipelines ; Query languages ; Random access memory ; SmartSSD ; spark ; SSD ; Throughput ; Workload ; Workloads</subject><ispartof>IEEE computer architecture letters, 2020-07, Vol.19 (2), p.110-113</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</citedby><cites>FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</cites><orcidid>0000-0003-2898-4382 ; 0000-0002-2358-7946 ; 0000-0003-3989-2109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9141369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9141369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Joo Hwan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Lagrange, Veronica</creatorcontrib><creatorcontrib>Krishnamoorthy, Praveen</creatorcontrib><creatorcontrib>Zhao, Xiaodong</creatorcontrib><creatorcontrib>Ki, Yang Seok</creatorcontrib><title>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</title><title>IEEE computer architecture letters</title><addtitle>LCA</addtitle><description>Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach.</description><subject>Bandwidth</subject><subject>Computation offloading</subject><subject>Data analysis</subject><subject>data analytics</subject><subject>Field programmable gate arrays</subject><subject>IP networks</subject><subject>Mathematical analysis</subject><subject>parquet</subject><subject>Performance evaluation</subject><subject>Pipelines</subject><subject>Query languages</subject><subject>Random access memory</subject><subject>SmartSSD</subject><subject>spark</subject><subject>SSD</subject><subject>Throughput</subject><subject>Workload</subject><subject>Workloads</subject><issn>1556-6056</issn><issn>1556-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89aZJJtsBA9La6tQVFg9hzQ7Ky21W5Ptof_eLS2eZg7f-5h5jN0ijBDBPszH5UiAgJEEsFKZMzbAPNeZBq3O__dcX7KrlFYASstCDdhT9eNjV1WTRz79mJW8DIHWFH1HNX8jH7Oqa6P_Jj7xneflxq_33TIk3m54D12zi8avE92c5pB9TZ8_xy_Z_H32Oi7nWZAau6zIhWowoFeLRueIGmvjvQgkm1r7wgpDdWOsNouFCuTBSGFEsORVURuLhRyy-2PvNra_O0qdW7W72B-TnFASDaAG1afgmAqxTSlS47Zx2b-3dwjuIMn1ktxBkjtJ6pG7I7Ikov-4RYVSW_kHSyxfxQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Lee, Joo Hwan</creator><creator>Zhang, Hui</creator><creator>Lagrange, Veronica</creator><creator>Krishnamoorthy, Praveen</creator><creator>Zhao, Xiaodong</creator><creator>Ki, Yang Seok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2898-4382</orcidid><orcidid>https://orcid.org/0000-0002-2358-7946</orcidid><orcidid>https://orcid.org/0000-0003-3989-2109</orcidid></search><sort><creationdate>20200701</creationdate><title>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</title><author>Lee, Joo Hwan ; Zhang, Hui ; Lagrange, Veronica ; Krishnamoorthy, Praveen ; Zhao, Xiaodong ; Ki, Yang Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidth</topic><topic>Computation offloading</topic><topic>Data analysis</topic><topic>data analytics</topic><topic>Field programmable gate arrays</topic><topic>IP networks</topic><topic>Mathematical analysis</topic><topic>parquet</topic><topic>Performance evaluation</topic><topic>Pipelines</topic><topic>Query languages</topic><topic>Random access memory</topic><topic>SmartSSD</topic><topic>spark</topic><topic>SSD</topic><topic>Throughput</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joo Hwan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Lagrange, Veronica</creatorcontrib><creatorcontrib>Krishnamoorthy, Praveen</creatorcontrib><creatorcontrib>Zhao, Xiaodong</creatorcontrib><creatorcontrib>Ki, Yang Seok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE computer architecture letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Joo Hwan</au><au>Zhang, Hui</au><au>Lagrange, Veronica</au><au>Krishnamoorthy, Praveen</au><au>Zhao, Xiaodong</au><au>Ki, Yang Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</atitle><jtitle>IEEE computer architecture letters</jtitle><stitle>LCA</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>2</issue><spage>110</spage><epage>113</epage><pages>110-113</pages><issn>1556-6056</issn><eissn>1556-6064</eissn><coden>ICALC3</coden><abstract>Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCA.2020.3009347</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2898-4382</orcidid><orcidid>https://orcid.org/0000-0002-2358-7946</orcidid><orcidid>https://orcid.org/0000-0003-3989-2109</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1556-6056 |
ispartof | IEEE computer architecture letters, 2020-07, Vol.19 (2), p.110-113 |
issn | 1556-6056 1556-6064 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LCA_2020_3009347 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth Computation offloading Data analysis data analytics Field programmable gate arrays IP networks Mathematical analysis parquet Performance evaluation Pipelines Query languages Random access memory SmartSSD spark SSD Throughput Workload Workloads |
title | SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SmartSSD:%20FPGA%20Accelerated%20Near-Storage%20Data%20Analytics%20on%20SSD&rft.jtitle=IEEE%20computer%20architecture%20letters&rft.au=Lee,%20Joo%20Hwan&rft.date=2020-07-01&rft.volume=19&rft.issue=2&rft.spage=110&rft.epage=113&rft.pages=110-113&rft.issn=1556-6056&rft.eissn=1556-6064&rft.coden=ICALC3&rft_id=info:doi/10.1109/LCA.2020.3009347&rft_dat=%3Cproquest_RIE%3E2431701604%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701604&rft_id=info:pmid/&rft_ieee_id=9141369&rfr_iscdi=true |