SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD

Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading compu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE computer architecture letters 2020-07, Vol.19 (2), p.110-113
Hauptverfasser: Lee, Joo Hwan, Zhang, Hui, Lagrange, Veronica, Krishnamoorthy, Praveen, Zhao, Xiaodong, Ki, Yang Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 2
container_start_page 110
container_title IEEE computer architecture letters
container_volume 19
creator Lee, Joo Hwan
Zhang, Hui
Lagrange, Veronica
Krishnamoorthy, Praveen
Zhao, Xiaodong
Ki, Yang Seok
description Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach.
doi_str_mv 10.1109/LCA.2020.3009347
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LCA_2020_3009347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9141369</ieee_id><sourcerecordid>2431701604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3wUvA89aZJJtsBA9La6tQVFg9hzQ7Ky21W5Ptof_eLS2eZg7f-5h5jN0ijBDBPszH5UiAgJEEsFKZMzbAPNeZBq3O__dcX7KrlFYASstCDdhT9eNjV1WTRz79mJW8DIHWFH1HNX8jH7Oqa6P_Jj7xneflxq_33TIk3m54D12zi8avE92c5pB9TZ8_xy_Z_H32Oi7nWZAau6zIhWowoFeLRueIGmvjvQgkm1r7wgpDdWOsNouFCuTBSGFEsORVURuLhRyy-2PvNra_O0qdW7W72B-TnFASDaAG1afgmAqxTSlS47Zx2b-3dwjuIMn1ktxBkjtJ6pG7I7Ikov-4RYVSW_kHSyxfxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431701604</pqid></control><display><type>article</type><title>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Joo Hwan ; Zhang, Hui ; Lagrange, Veronica ; Krishnamoorthy, Praveen ; Zhao, Xiaodong ; Ki, Yang Seok</creator><creatorcontrib>Lee, Joo Hwan ; Zhang, Hui ; Lagrange, Veronica ; Krishnamoorthy, Praveen ; Zhao, Xiaodong ; Ki, Yang Seok</creatorcontrib><description>Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach.</description><identifier>ISSN: 1556-6056</identifier><identifier>EISSN: 1556-6064</identifier><identifier>DOI: 10.1109/LCA.2020.3009347</identifier><identifier>CODEN: ICALC3</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Computation offloading ; Data analysis ; data analytics ; Field programmable gate arrays ; IP networks ; Mathematical analysis ; parquet ; Performance evaluation ; Pipelines ; Query languages ; Random access memory ; SmartSSD ; spark ; SSD ; Throughput ; Workload ; Workloads</subject><ispartof>IEEE computer architecture letters, 2020-07, Vol.19 (2), p.110-113</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</citedby><cites>FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</cites><orcidid>0000-0003-2898-4382 ; 0000-0002-2358-7946 ; 0000-0003-3989-2109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9141369$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9141369$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Joo Hwan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Lagrange, Veronica</creatorcontrib><creatorcontrib>Krishnamoorthy, Praveen</creatorcontrib><creatorcontrib>Zhao, Xiaodong</creatorcontrib><creatorcontrib>Ki, Yang Seok</creatorcontrib><title>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</title><title>IEEE computer architecture letters</title><addtitle>LCA</addtitle><description>Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach.</description><subject>Bandwidth</subject><subject>Computation offloading</subject><subject>Data analysis</subject><subject>data analytics</subject><subject>Field programmable gate arrays</subject><subject>IP networks</subject><subject>Mathematical analysis</subject><subject>parquet</subject><subject>Performance evaluation</subject><subject>Pipelines</subject><subject>Query languages</subject><subject>Random access memory</subject><subject>SmartSSD</subject><subject>spark</subject><subject>SSD</subject><subject>Throughput</subject><subject>Workload</subject><subject>Workloads</subject><issn>1556-6056</issn><issn>1556-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3wUvA89aZJJtsBA9La6tQVFg9hzQ7Ky21W5Ptof_eLS2eZg7f-5h5jN0ijBDBPszH5UiAgJEEsFKZMzbAPNeZBq3O__dcX7KrlFYASstCDdhT9eNjV1WTRz79mJW8DIHWFH1HNX8jH7Oqa6P_Jj7xneflxq_33TIk3m54D12zi8avE92c5pB9TZ8_xy_Z_H32Oi7nWZAau6zIhWowoFeLRueIGmvjvQgkm1r7wgpDdWOsNouFCuTBSGFEsORVURuLhRyy-2PvNra_O0qdW7W72B-TnFASDaAG1afgmAqxTSlS47Zx2b-3dwjuIMn1ktxBkjtJ6pG7I7Ikov-4RYVSW_kHSyxfxQ</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Lee, Joo Hwan</creator><creator>Zhang, Hui</creator><creator>Lagrange, Veronica</creator><creator>Krishnamoorthy, Praveen</creator><creator>Zhao, Xiaodong</creator><creator>Ki, Yang Seok</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2898-4382</orcidid><orcidid>https://orcid.org/0000-0002-2358-7946</orcidid><orcidid>https://orcid.org/0000-0003-3989-2109</orcidid></search><sort><creationdate>20200701</creationdate><title>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</title><author>Lee, Joo Hwan ; Zhang, Hui ; Lagrange, Veronica ; Krishnamoorthy, Praveen ; Zhao, Xiaodong ; Ki, Yang Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8524f1c1a4bf651161d7aa2ce3fd6a8927edf7967bb4cea073272c9ea48d79183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bandwidth</topic><topic>Computation offloading</topic><topic>Data analysis</topic><topic>data analytics</topic><topic>Field programmable gate arrays</topic><topic>IP networks</topic><topic>Mathematical analysis</topic><topic>parquet</topic><topic>Performance evaluation</topic><topic>Pipelines</topic><topic>Query languages</topic><topic>Random access memory</topic><topic>SmartSSD</topic><topic>spark</topic><topic>SSD</topic><topic>Throughput</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Joo Hwan</creatorcontrib><creatorcontrib>Zhang, Hui</creatorcontrib><creatorcontrib>Lagrange, Veronica</creatorcontrib><creatorcontrib>Krishnamoorthy, Praveen</creatorcontrib><creatorcontrib>Zhao, Xiaodong</creatorcontrib><creatorcontrib>Ki, Yang Seok</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE computer architecture letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Joo Hwan</au><au>Zhang, Hui</au><au>Lagrange, Veronica</au><au>Krishnamoorthy, Praveen</au><au>Zhao, Xiaodong</au><au>Ki, Yang Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD</atitle><jtitle>IEEE computer architecture letters</jtitle><stitle>LCA</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>19</volume><issue>2</issue><spage>110</spage><epage>113</epage><pages>110-113</pages><issn>1556-6056</issn><eissn>1556-6064</eissn><coden>ICALC3</coden><abstract>Faced with the increasing disparity between SSD throughput and CPU-based compute capabilities, there have been growing interests to move compute closer to storage and accelerate the data analytic workloads. In this letter, we propose SmartSSD, an SSD with onboard FPGA, which enables offloading computation within SSD. We perform a detailed model-based evaluation to evaluate the end-to-end performance and energy benefit of SmartSSD for the representative data analytic workloads with Spark SQL and Parquet columnar data format. Our evaluation shows that SmartSSD has the potential to have a transformative impact when building a high performance data analytic system, which enables 3.04x performance improvement and consuming only 45.8 percent of energy compared to the conventional CPU-based approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCA.2020.3009347</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2898-4382</orcidid><orcidid>https://orcid.org/0000-0002-2358-7946</orcidid><orcidid>https://orcid.org/0000-0003-3989-2109</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1556-6056
ispartof IEEE computer architecture letters, 2020-07, Vol.19 (2), p.110-113
issn 1556-6056
1556-6064
language eng
recordid cdi_crossref_primary_10_1109_LCA_2020_3009347
source IEEE Electronic Library (IEL)
subjects Bandwidth
Computation offloading
Data analysis
data analytics
Field programmable gate arrays
IP networks
Mathematical analysis
parquet
Performance evaluation
Pipelines
Query languages
Random access memory
SmartSSD
spark
SSD
Throughput
Workload
Workloads
title SmartSSD: FPGA Accelerated Near-Storage Data Analytics on SSD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SmartSSD:%20FPGA%20Accelerated%20Near-Storage%20Data%20Analytics%20on%20SSD&rft.jtitle=IEEE%20computer%20architecture%20letters&rft.au=Lee,%20Joo%20Hwan&rft.date=2020-07-01&rft.volume=19&rft.issue=2&rft.spage=110&rft.epage=113&rft.pages=110-113&rft.issn=1556-6056&rft.eissn=1556-6064&rft.coden=ICALC3&rft_id=info:doi/10.1109/LCA.2020.3009347&rft_dat=%3Cproquest_RIE%3E2431701604%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431701604&rft_id=info:pmid/&rft_ieee_id=9141369&rfr_iscdi=true