An Accurate Modeling Technique for Periodic Antenna Arrays-Experimental Validation

In the context of large periodic antenna arrays, a modeling technique implementation and its experimental validation on a 16-element array are presented. This passive array is designed to radiate linear polarization in Ka-band (19.7-20.2 GHz). It is a preliminary step of the modeling of a much large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2017-01, Vol.16, p.1573-1576
Hauptverfasser: Lesur, Benoit, Thevenot, Marc, Arnaud, Eric, Monediere, Thierry, Melle, Christophe, Chaimbault, David, Karas, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1576
container_issue
container_start_page 1573
container_title IEEE antennas and wireless propagation letters
container_volume 16
creator Lesur, Benoit
Thevenot, Marc
Arnaud, Eric
Monediere, Thierry
Melle, Christophe
Chaimbault, David
Karas, Alain
description In the context of large periodic antenna arrays, a modeling technique implementation and its experimental validation on a 16-element array are presented. This passive array is designed to radiate linear polarization in Ka-band (19.7-20.2 GHz). It is a preliminary step of the modeling of a much larger array of 1024 radiating elements. Existing antenna arrays simulation techniques allow the representation of an infinitely surrounded unit cell through periodic boundary conditions. However, large arrays can be difficult to model accurately. A new wideband modeling technique for large periodic antenna arrays is used to reconstruct the scattering matrix of the 16-element array. This technique is based on periodic reconstruction and requires only small calculation volumes. Results obtained with this technique are then compared to full-wave results. Finally, experimental results are presented, and a comparison between measurements, full-wave calculation, and periodic reconstruction is done.
doi_str_mv 10.1109/LAWP.2017.2651359
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LAWP_2017_2651359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7812605</ieee_id><sourcerecordid>1909277598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9282198bd10d4c03b8d40bb11ff625c08090abbf4a2b75a2a97c3ee5a12c5ca73</originalsourceid><addsrcrecordid>eNo9kNFLwzAQxoMoOKd_gPhS8MmHzlzSNM1jGdMJFYdMfQxpmrqMms60E_ffm9Lh0x13v-_j7kPoGvAMAIv7Iv9YzQgGPiMpA8rECZoAS7KYccZPh56mMRDCztFF121xIFNGJ-g1d1Gu9d6r3kTPbWUa6z6jtdEbZ7_3JqpbH62Mt21ldZS73jinotx7dejixe8ubL6M61UTvavGVqq3rbtEZ7VqOnN1rFP09rBYz5dx8fL4NM-LWFPC-1iQjIDIygpwlWhMy6xKcFkC1HVKmMYZFliVZZ0oUnKmiBJcU2OYAqKZVpxO0d3ou1GN3IVDlD_IVlm5zAs5zHB4miSC_kBgb0d259vwVtfLbbv3LpwnQWBBOGciCxSMlPZt13lT_9sClkPMcohZDjHLY8xBczNqrDHmn-cZkBQz-gfKWHgB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909277598</pqid></control><display><type>article</type><title>An Accurate Modeling Technique for Periodic Antenna Arrays-Experimental Validation</title><source>IEEE Electronic Library (IEL)</source><creator>Lesur, Benoit ; Thevenot, Marc ; Arnaud, Eric ; Monediere, Thierry ; Melle, Christophe ; Chaimbault, David ; Karas, Alain</creator><creatorcontrib>Lesur, Benoit ; Thevenot, Marc ; Arnaud, Eric ; Monediere, Thierry ; Melle, Christophe ; Chaimbault, David ; Karas, Alain</creatorcontrib><description>In the context of large periodic antenna arrays, a modeling technique implementation and its experimental validation on a 16-element array are presented. This passive array is designed to radiate linear polarization in Ka-band (19.7-20.2 GHz). It is a preliminary step of the modeling of a much larger array of 1024 radiating elements. Existing antenna arrays simulation techniques allow the representation of an infinitely surrounded unit cell through periodic boundary conditions. However, large arrays can be difficult to model accurately. A new wideband modeling technique for large periodic antenna arrays is used to reconstruct the scattering matrix of the 16-element array. This technique is based on periodic reconstruction and requires only small calculation volumes. Results obtained with this technique are then compared to full-wave results. Finally, experimental results are presented, and a comparison between measurements, full-wave calculation, and periodic reconstruction is done.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2017.2651359</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accurate modeling ; Antenna arrays ; Antenna radiation patterns ; Antennas ; Boundary conditions ; Broadband ; Computer simulation ; Dispersion ; Electromagnetism ; Engineering Sciences ; experimental validation ; Finite element analysis ; full-wave validation ; Ka-band ; large antenna array ; Linear polarization ; Mathematical models ; Polarization ; Ports (Computers) ; Reconstruction ; Reflection coefficient ; Scattering ; Unit cell</subject><ispartof>IEEE antennas and wireless propagation letters, 2017-01, Vol.16, p.1573-1576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9282198bd10d4c03b8d40bb11ff625c08090abbf4a2b75a2a97c3ee5a12c5ca73</citedby><cites>FETCH-LOGICAL-c327t-9282198bd10d4c03b8d40bb11ff625c08090abbf4a2b75a2a97c3ee5a12c5ca73</cites><orcidid>0000-0002-4981-3366 ; 0000-0001-6740-6951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7812605$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7812605$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01532493$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lesur, Benoit</creatorcontrib><creatorcontrib>Thevenot, Marc</creatorcontrib><creatorcontrib>Arnaud, Eric</creatorcontrib><creatorcontrib>Monediere, Thierry</creatorcontrib><creatorcontrib>Melle, Christophe</creatorcontrib><creatorcontrib>Chaimbault, David</creatorcontrib><creatorcontrib>Karas, Alain</creatorcontrib><title>An Accurate Modeling Technique for Periodic Antenna Arrays-Experimental Validation</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In the context of large periodic antenna arrays, a modeling technique implementation and its experimental validation on a 16-element array are presented. This passive array is designed to radiate linear polarization in Ka-band (19.7-20.2 GHz). It is a preliminary step of the modeling of a much larger array of 1024 radiating elements. Existing antenna arrays simulation techniques allow the representation of an infinitely surrounded unit cell through periodic boundary conditions. However, large arrays can be difficult to model accurately. A new wideband modeling technique for large periodic antenna arrays is used to reconstruct the scattering matrix of the 16-element array. This technique is based on periodic reconstruction and requires only small calculation volumes. Results obtained with this technique are then compared to full-wave results. Finally, experimental results are presented, and a comparison between measurements, full-wave calculation, and periodic reconstruction is done.</description><subject>Accurate modeling</subject><subject>Antenna arrays</subject><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Boundary conditions</subject><subject>Broadband</subject><subject>Computer simulation</subject><subject>Dispersion</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>experimental validation</subject><subject>Finite element analysis</subject><subject>full-wave validation</subject><subject>Ka-band</subject><subject>large antenna array</subject><subject>Linear polarization</subject><subject>Mathematical models</subject><subject>Polarization</subject><subject>Ports (Computers)</subject><subject>Reconstruction</subject><subject>Reflection coefficient</subject><subject>Scattering</subject><subject>Unit cell</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFLwzAQxoMoOKd_gPhS8MmHzlzSNM1jGdMJFYdMfQxpmrqMms60E_ffm9Lh0x13v-_j7kPoGvAMAIv7Iv9YzQgGPiMpA8rECZoAS7KYccZPh56mMRDCztFF121xIFNGJ-g1d1Gu9d6r3kTPbWUa6z6jtdEbZ7_3JqpbH62Mt21ldZS73jinotx7dejixe8ubL6M61UTvavGVqq3rbtEZ7VqOnN1rFP09rBYz5dx8fL4NM-LWFPC-1iQjIDIygpwlWhMy6xKcFkC1HVKmMYZFliVZZ0oUnKmiBJcU2OYAqKZVpxO0d3ou1GN3IVDlD_IVlm5zAs5zHB4miSC_kBgb0d259vwVtfLbbv3LpwnQWBBOGciCxSMlPZt13lT_9sClkPMcohZDjHLY8xBczNqrDHmn-cZkBQz-gfKWHgB</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Lesur, Benoit</creator><creator>Thevenot, Marc</creator><creator>Arnaud, Eric</creator><creator>Monediere, Thierry</creator><creator>Melle, Christophe</creator><creator>Chaimbault, David</creator><creator>Karas, Alain</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4981-3366</orcidid><orcidid>https://orcid.org/0000-0001-6740-6951</orcidid></search><sort><creationdate>20170101</creationdate><title>An Accurate Modeling Technique for Periodic Antenna Arrays-Experimental Validation</title><author>Lesur, Benoit ; Thevenot, Marc ; Arnaud, Eric ; Monediere, Thierry ; Melle, Christophe ; Chaimbault, David ; Karas, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9282198bd10d4c03b8d40bb11ff625c08090abbf4a2b75a2a97c3ee5a12c5ca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accurate modeling</topic><topic>Antenna arrays</topic><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Boundary conditions</topic><topic>Broadband</topic><topic>Computer simulation</topic><topic>Dispersion</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>experimental validation</topic><topic>Finite element analysis</topic><topic>full-wave validation</topic><topic>Ka-band</topic><topic>large antenna array</topic><topic>Linear polarization</topic><topic>Mathematical models</topic><topic>Polarization</topic><topic>Ports (Computers)</topic><topic>Reconstruction</topic><topic>Reflection coefficient</topic><topic>Scattering</topic><topic>Unit cell</topic><toplevel>online_resources</toplevel><creatorcontrib>Lesur, Benoit</creatorcontrib><creatorcontrib>Thevenot, Marc</creatorcontrib><creatorcontrib>Arnaud, Eric</creatorcontrib><creatorcontrib>Monediere, Thierry</creatorcontrib><creatorcontrib>Melle, Christophe</creatorcontrib><creatorcontrib>Chaimbault, David</creatorcontrib><creatorcontrib>Karas, Alain</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lesur, Benoit</au><au>Thevenot, Marc</au><au>Arnaud, Eric</au><au>Monediere, Thierry</au><au>Melle, Christophe</au><au>Chaimbault, David</au><au>Karas, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Accurate Modeling Technique for Periodic Antenna Arrays-Experimental Validation</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>16</volume><spage>1573</spage><epage>1576</epage><pages>1573-1576</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In the context of large periodic antenna arrays, a modeling technique implementation and its experimental validation on a 16-element array are presented. This passive array is designed to radiate linear polarization in Ka-band (19.7-20.2 GHz). It is a preliminary step of the modeling of a much larger array of 1024 radiating elements. Existing antenna arrays simulation techniques allow the representation of an infinitely surrounded unit cell through periodic boundary conditions. However, large arrays can be difficult to model accurately. A new wideband modeling technique for large periodic antenna arrays is used to reconstruct the scattering matrix of the 16-element array. This technique is based on periodic reconstruction and requires only small calculation volumes. Results obtained with this technique are then compared to full-wave results. Finally, experimental results are presented, and a comparison between measurements, full-wave calculation, and periodic reconstruction is done.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2017.2651359</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4981-3366</orcidid><orcidid>https://orcid.org/0000-0001-6740-6951</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2017-01, Vol.16, p.1573-1576
issn 1536-1225
1548-5757
language eng
recordid cdi_crossref_primary_10_1109_LAWP_2017_2651359
source IEEE Electronic Library (IEL)
subjects Accurate modeling
Antenna arrays
Antenna radiation patterns
Antennas
Boundary conditions
Broadband
Computer simulation
Dispersion
Electromagnetism
Engineering Sciences
experimental validation
Finite element analysis
full-wave validation
Ka-band
large antenna array
Linear polarization
Mathematical models
Polarization
Ports (Computers)
Reconstruction
Reflection coefficient
Scattering
Unit cell
title An Accurate Modeling Technique for Periodic Antenna Arrays-Experimental Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A54%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Accurate%20Modeling%20Technique%20for%20Periodic%20Antenna%20Arrays-Experimental%20Validation&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Lesur,%20Benoit&rft.date=2017-01-01&rft.volume=16&rft.spage=1573&rft.epage=1576&rft.pages=1573-1576&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2017.2651359&rft_dat=%3Cproquest_RIE%3E1909277598%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909277598&rft_id=info:pmid/&rft_ieee_id=7812605&rfr_iscdi=true