A 3-D Continuous–Discontinuous Galerkin Finite-Element Time-Domain Method for Maxwell's Equations
A 3-D continuous-discontinuous Galerkin (CDG) finite-element time-domain method for Maxwell's equations is proposed to analyze transient electromagnetic problems, which is based on the field variables E and B. This method is aimed at exploiting the advantages of reduced number of unknowns for c...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2017, Vol.16, p.908-911 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 911 |
---|---|
container_issue | |
container_start_page | 908 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 16 |
creator | Xu, Hao Ding, Dazhi Bi, Junjian Chen, Rushan |
description | A 3-D continuous-discontinuous Galerkin (CDG) finite-element time-domain method for Maxwell's equations is proposed to analyze transient electromagnetic problems, which is based on the field variables E and B. This method is aimed at exploiting the advantages of reduced number of unknowns for continuous Galerkin (CG) method and block-diagonal property of discontinuous Galerkin (DG) method. The whole domain is divided into several clusters. The CG is used for the elements in the clusters, and they exchange information with adjacent clusters through traditional numerical fluxes in a DG manner. Moreover, compared to the conventional method based on field variables E and H, the proposed method can eliminate spurious modes. Numerical results demonstrate that the proposed CDG method is superior to the DG method in terms of memory and simulation time. |
doi_str_mv | 10.1109/LAWP.2016.2641009 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_LAWP_2016_2641009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7786844</ieee_id><sourcerecordid>10_1109_LAWP_2016_2641009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-12372f222b1d1cf510120b606459f505db9d67354b1223c2add937eaa33370013</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqVwAMTGO1YuHju2m2XVP5BawaKIZeQkE2FIYohTUXbcgRtyEhK16mpmNPNG732EXAMfAfD4bjV5eRoJDnokdAScxydkACoaM2WUOe17qRkIoc7JRQhvnIPRSg5INqGSzejU162rt34b_n5-Zy5kx5kubYnNu6vpwtWuRTYvscK6pRtXIZv5ynarNbavPqeFb-ja7r6wLG8DnX9ubet8HS7JWWHLgFeHOiTPi_lmes9Wj8uH6WTFMqFV27mTRhRCiBRyyAoFHARPNdeRigvFVZ7GuTZSRWmXQ2bC5nksDVorpTRdIDkksP-bNT6EBovko3GVbb4T4ElPKekpJT2l5ECp09zsNQ4Rj_fGjPU4iuQ_S8djvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 3-D Continuous–Discontinuous Galerkin Finite-Element Time-Domain Method for Maxwell's Equations</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Hao ; Ding, Dazhi ; Bi, Junjian ; Chen, Rushan</creator><creatorcontrib>Xu, Hao ; Ding, Dazhi ; Bi, Junjian ; Chen, Rushan</creatorcontrib><description>A 3-D continuous-discontinuous Galerkin (CDG) finite-element time-domain method for Maxwell's equations is proposed to analyze transient electromagnetic problems, which is based on the field variables E and B. This method is aimed at exploiting the advantages of reduced number of unknowns for continuous Galerkin (CG) method and block-diagonal property of discontinuous Galerkin (DG) method. The whole domain is divided into several clusters. The CG is used for the elements in the clusters, and they exchange information with adjacent clusters through traditional numerical fluxes in a DG manner. Moreover, compared to the conventional method based on field variables E and H, the proposed method can eliminate spurious modes. Numerical results demonstrate that the proposed CDG method is superior to the DG method in terms of memory and simulation time.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2016.2641009</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cavity resonators ; Computational efficiency ; Computational modeling ; Continuous Galerkin (CG) ; continuous–discontinuous Galerkin finite-element time-domain (CDG-FETD) ; discontinuous Galerkin (DG) ; Finite element analysis ; Mathematical model ; Maxwell's equations ; Method of moments ; Time-domain analysis</subject><ispartof>IEEE antennas and wireless propagation letters, 2017, Vol.16, p.908-911</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-12372f222b1d1cf510120b606459f505db9d67354b1223c2add937eaa33370013</citedby><cites>FETCH-LOGICAL-c265t-12372f222b1d1cf510120b606459f505db9d67354b1223c2add937eaa33370013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7786844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,4025,27928,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7786844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Ding, Dazhi</creatorcontrib><creatorcontrib>Bi, Junjian</creatorcontrib><creatorcontrib>Chen, Rushan</creatorcontrib><title>A 3-D Continuous–Discontinuous Galerkin Finite-Element Time-Domain Method for Maxwell's Equations</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>A 3-D continuous-discontinuous Galerkin (CDG) finite-element time-domain method for Maxwell's equations is proposed to analyze transient electromagnetic problems, which is based on the field variables E and B. This method is aimed at exploiting the advantages of reduced number of unknowns for continuous Galerkin (CG) method and block-diagonal property of discontinuous Galerkin (DG) method. The whole domain is divided into several clusters. The CG is used for the elements in the clusters, and they exchange information with adjacent clusters through traditional numerical fluxes in a DG manner. Moreover, compared to the conventional method based on field variables E and H, the proposed method can eliminate spurious modes. Numerical results demonstrate that the proposed CDG method is superior to the DG method in terms of memory and simulation time.</description><subject>Cavity resonators</subject><subject>Computational efficiency</subject><subject>Computational modeling</subject><subject>Continuous Galerkin (CG)</subject><subject>continuous–discontinuous Galerkin finite-element time-domain (CDG-FETD)</subject><subject>discontinuous Galerkin (DG)</subject><subject>Finite element analysis</subject><subject>Mathematical model</subject><subject>Maxwell's equations</subject><subject>Method of moments</subject><subject>Time-domain analysis</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1OwzAQhS0EEqVwAMTGO1YuHju2m2XVP5BawaKIZeQkE2FIYohTUXbcgRtyEhK16mpmNPNG732EXAMfAfD4bjV5eRoJDnokdAScxydkACoaM2WUOe17qRkIoc7JRQhvnIPRSg5INqGSzejU162rt34b_n5-Zy5kx5kubYnNu6vpwtWuRTYvscK6pRtXIZv5ynarNbavPqeFb-ja7r6wLG8DnX9ubet8HS7JWWHLgFeHOiTPi_lmes9Wj8uH6WTFMqFV27mTRhRCiBRyyAoFHARPNdeRigvFVZ7GuTZSRWmXQ2bC5nksDVorpTRdIDkksP-bNT6EBovko3GVbb4T4ElPKekpJT2l5ECp09zsNQ4Rj_fGjPU4iuQ_S8djvw</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Xu, Hao</creator><creator>Ding, Dazhi</creator><creator>Bi, Junjian</creator><creator>Chen, Rushan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>A 3-D Continuous–Discontinuous Galerkin Finite-Element Time-Domain Method for Maxwell's Equations</title><author>Xu, Hao ; Ding, Dazhi ; Bi, Junjian ; Chen, Rushan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-12372f222b1d1cf510120b606459f505db9d67354b1223c2add937eaa33370013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cavity resonators</topic><topic>Computational efficiency</topic><topic>Computational modeling</topic><topic>Continuous Galerkin (CG)</topic><topic>continuous–discontinuous Galerkin finite-element time-domain (CDG-FETD)</topic><topic>discontinuous Galerkin (DG)</topic><topic>Finite element analysis</topic><topic>Mathematical model</topic><topic>Maxwell's equations</topic><topic>Method of moments</topic><topic>Time-domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hao</creatorcontrib><creatorcontrib>Ding, Dazhi</creatorcontrib><creatorcontrib>Bi, Junjian</creatorcontrib><creatorcontrib>Chen, Rushan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Hao</au><au>Ding, Dazhi</au><au>Bi, Junjian</au><au>Chen, Rushan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3-D Continuous–Discontinuous Galerkin Finite-Element Time-Domain Method for Maxwell's Equations</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2017</date><risdate>2017</risdate><volume>16</volume><spage>908</spage><epage>911</epage><pages>908-911</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>A 3-D continuous-discontinuous Galerkin (CDG) finite-element time-domain method for Maxwell's equations is proposed to analyze transient electromagnetic problems, which is based on the field variables E and B. This method is aimed at exploiting the advantages of reduced number of unknowns for continuous Galerkin (CG) method and block-diagonal property of discontinuous Galerkin (DG) method. The whole domain is divided into several clusters. The CG is used for the elements in the clusters, and they exchange information with adjacent clusters through traditional numerical fluxes in a DG manner. Moreover, compared to the conventional method based on field variables E and H, the proposed method can eliminate spurious modes. Numerical results demonstrate that the proposed CDG method is superior to the DG method in terms of memory and simulation time.</abstract><pub>IEEE</pub><doi>10.1109/LAWP.2016.2641009</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2017, Vol.16, p.908-911 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_crossref_primary_10_1109_LAWP_2016_2641009 |
source | IEEE Electronic Library (IEL) |
subjects | Cavity resonators Computational efficiency Computational modeling Continuous Galerkin (CG) continuous–discontinuous Galerkin finite-element time-domain (CDG-FETD) discontinuous Galerkin (DG) Finite element analysis Mathematical model Maxwell's equations Method of moments Time-domain analysis |
title | A 3-D Continuous–Discontinuous Galerkin Finite-Element Time-Domain Method for Maxwell's Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203-D%20Continuous%E2%80%93Discontinuous%20Galerkin%20Finite-Element%20Time-Domain%20Method%20for%20Maxwell's%20Equations&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Xu,%20Hao&rft.date=2017&rft.volume=16&rft.spage=908&rft.epage=911&rft.pages=908-911&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2016.2641009&rft_dat=%3Ccrossref_RIE%3E10_1109_LAWP_2016_2641009%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7786844&rfr_iscdi=true |