Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications
This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the ga...
Gespeichert in:
Veröffentlicht in: | IEEE journal on exploratory solid-state computational devices and circuits 2022-06, Vol.8 (1), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE journal on exploratory solid-state computational devices and circuits |
container_volume | 8 |
creator | Lone, Aijaz H. Amara, S. Fariborzi, H. |
description | This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm. |
doi_str_mv | 10.1109/JXCDC.2021.3138038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JXCDC_2021_3138038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9662393</ieee_id><doaj_id>oai_doaj_org_article_ca61cea112914912b7e68a18973975ca</doaj_id><sourcerecordid>2621066249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</originalsourceid><addsrcrecordid>eNpNkc1u3SAQha2qlRqleYF2g9S1bxmwjVmmTn8SJe0i6c8OjWHuja98wQV7kVfoUxfnRlFXjOB8Z5g5RfEW-AaA6w9Xv7uLbiO4gI0E2XLZvihOhBS61ELCy__q18VZSnvOOdSqUkqfFH9_hnHGHZVd8HMM40iOXYQDDp79wnFkN2Eegi8_YsoP32iJwTP0jt3Owd5jmgfLbnDnaS3uFu9pZFeLtyvEbh88TonYNsQjeghxus_CLhymZR78jp1P0zhYXOXpTfFqi2Ois6fztPjx-dNd97W8_v7lsju_Lm3F67lsHVEvZQ3K9tbqvtFgK-XA9aJXUjoSqupb57bYK9G6vI264uAaUUttqRXytLg8-rqAezPF4YDxwQQczONFiDuDMc8zkrHYgCUEEBoqDbkBNS1Cq5XUqraYvd4fvaYY_iyUZrMPS_T5-0Y0AnjTiEpnlTiqbAwpRdo-dwVu1gjNY4RmjdA8RZihd0doIKJnQGdHqaX8B6HomUE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066249</pqid></control><display><type>article</type><title>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lone, Aijaz H. ; Amara, S. ; Fariborzi, H.</creator><creatorcontrib>Lone, Aijaz H. ; Amara, S. ; Fariborzi, H.</creatorcontrib><description>This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm.</description><identifier>ISSN: 2329-9231</identifier><identifier>EISSN: 2329-9231</identifier><identifier>DOI: 10.1109/JXCDC.2021.3138038</identifier><identifier>CODEN: IJESQ5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Domain wall motion (DWM) ; Domain walls ; Electric fields ; Electric potential ; Green's functions ; Magnetic anisotropy ; magnetic tunnel junction (MTJ) ; Magnetic tunneling ; Micromagnetics ; Neuromorphic computing ; Neurons ; Notches ; Orbits ; pattern recognition ; Pinning ; Pulse duration ; spin orbit torque ; Synapses ; thermal effects ; Thermal noise ; Torque ; Tunnel junctions ; Voltage ; Voltage control ; voltage-controlled neuron</subject><ispartof>IEEE journal on exploratory solid-state computational devices and circuits, 2022-06, Vol.8 (1), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</citedby><cites>FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</cites><orcidid>0000-0002-7828-0239 ; 0000-0002-0131-1703 ; 0000-0002-1687-2917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9662393$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lone, Aijaz H.</creatorcontrib><creatorcontrib>Amara, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><title>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</title><title>IEEE journal on exploratory solid-state computational devices and circuits</title><addtitle>JXCDC</addtitle><description>This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm.</description><subject>Algorithms</subject><subject>Domain wall motion (DWM)</subject><subject>Domain walls</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Green's functions</subject><subject>Magnetic anisotropy</subject><subject>magnetic tunnel junction (MTJ)</subject><subject>Magnetic tunneling</subject><subject>Micromagnetics</subject><subject>Neuromorphic computing</subject><subject>Neurons</subject><subject>Notches</subject><subject>Orbits</subject><subject>pattern recognition</subject><subject>Pinning</subject><subject>Pulse duration</subject><subject>spin orbit torque</subject><subject>Synapses</subject><subject>thermal effects</subject><subject>Thermal noise</subject><subject>Torque</subject><subject>Tunnel junctions</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>voltage-controlled neuron</subject><issn>2329-9231</issn><issn>2329-9231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1u3SAQha2qlRqleYF2g9S1bxmwjVmmTn8SJe0i6c8OjWHuja98wQV7kVfoUxfnRlFXjOB8Z5g5RfEW-AaA6w9Xv7uLbiO4gI0E2XLZvihOhBS61ELCy__q18VZSnvOOdSqUkqfFH9_hnHGHZVd8HMM40iOXYQDDp79wnFkN2Eegi8_YsoP32iJwTP0jt3Owd5jmgfLbnDnaS3uFu9pZFeLtyvEbh88TonYNsQjeghxus_CLhymZR78jp1P0zhYXOXpTfFqi2Ois6fztPjx-dNd97W8_v7lsju_Lm3F67lsHVEvZQ3K9tbqvtFgK-XA9aJXUjoSqupb57bYK9G6vI264uAaUUttqRXytLg8-rqAezPF4YDxwQQczONFiDuDMc8zkrHYgCUEEBoqDbkBNS1Cq5XUqraYvd4fvaYY_iyUZrMPS_T5-0Y0AnjTiEpnlTiqbAwpRdo-dwVu1gjNY4RmjdA8RZihd0doIKJnQGdHqaX8B6HomUE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lone, Aijaz H.</creator><creator>Amara, S.</creator><creator>Fariborzi, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7828-0239</orcidid><orcidid>https://orcid.org/0000-0002-0131-1703</orcidid><orcidid>https://orcid.org/0000-0002-1687-2917</orcidid></search><sort><creationdate>20220601</creationdate><title>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</title><author>Lone, Aijaz H. ; Amara, S. ; Fariborzi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Domain wall motion (DWM)</topic><topic>Domain walls</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Green's functions</topic><topic>Magnetic anisotropy</topic><topic>magnetic tunnel junction (MTJ)</topic><topic>Magnetic tunneling</topic><topic>Micromagnetics</topic><topic>Neuromorphic computing</topic><topic>Neurons</topic><topic>Notches</topic><topic>Orbits</topic><topic>pattern recognition</topic><topic>Pinning</topic><topic>Pulse duration</topic><topic>spin orbit torque</topic><topic>Synapses</topic><topic>thermal effects</topic><topic>Thermal noise</topic><topic>Torque</topic><topic>Tunnel junctions</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>voltage-controlled neuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lone, Aijaz H.</creatorcontrib><creatorcontrib>Amara, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal on exploratory solid-state computational devices and circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lone, Aijaz H.</au><au>Amara, S.</au><au>Fariborzi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</atitle><jtitle>IEEE journal on exploratory solid-state computational devices and circuits</jtitle><stitle>JXCDC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2329-9231</issn><eissn>2329-9231</eissn><coden>IJESQ5</coden><abstract>This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JXCDC.2021.3138038</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7828-0239</orcidid><orcidid>https://orcid.org/0000-0002-0131-1703</orcidid><orcidid>https://orcid.org/0000-0002-1687-2917</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2329-9231 |
ispartof | IEEE journal on exploratory solid-state computational devices and circuits, 2022-06, Vol.8 (1), p.1-9 |
issn | 2329-9231 2329-9231 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JXCDC_2021_3138038 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Domain wall motion (DWM) Domain walls Electric fields Electric potential Green's functions Magnetic anisotropy magnetic tunnel junction (MTJ) Magnetic tunneling Micromagnetics Neuromorphic computing Neurons Notches Orbits pattern recognition Pinning Pulse duration spin orbit torque Synapses thermal effects Thermal noise Torque Tunnel junctions Voltage Voltage control voltage-controlled neuron |
title | Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-Controlled%20Domain%20Wall%20Motion-Based%20Neuron%20and%20Stochastic%20Magnetic%20Tunnel%20Junction%20Synapse%20for%20Neuromorphic%20Computing%20Applications&rft.jtitle=IEEE%20journal%20on%20exploratory%20solid-state%20computational%20devices%20and%20circuits&rft.au=Lone,%20Aijaz%20H.&rft.date=2022-06-01&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2329-9231&rft.eissn=2329-9231&rft.coden=IJESQ5&rft_id=info:doi/10.1109/JXCDC.2021.3138038&rft_dat=%3Cproquest_cross%3E2621066249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066249&rft_id=info:pmid/&rft_ieee_id=9662393&rft_doaj_id=oai_doaj_org_article_ca61cea112914912b7e68a18973975ca&rfr_iscdi=true |