Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications

This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on exploratory solid-state computational devices and circuits 2022-06, Vol.8 (1), p.1-9
Hauptverfasser: Lone, Aijaz H., Amara, S., Fariborzi, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title IEEE journal on exploratory solid-state computational devices and circuits
container_volume 8
creator Lone, Aijaz H.
Amara, S.
Fariborzi, H.
description This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm.
doi_str_mv 10.1109/JXCDC.2021.3138038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JXCDC_2021_3138038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9662393</ieee_id><doaj_id>oai_doaj_org_article_ca61cea112914912b7e68a18973975ca</doaj_id><sourcerecordid>2621066249</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</originalsourceid><addsrcrecordid>eNpNkc1u3SAQha2qlRqleYF2g9S1bxmwjVmmTn8SJe0i6c8OjWHuja98wQV7kVfoUxfnRlFXjOB8Z5g5RfEW-AaA6w9Xv7uLbiO4gI0E2XLZvihOhBS61ELCy__q18VZSnvOOdSqUkqfFH9_hnHGHZVd8HMM40iOXYQDDp79wnFkN2Eegi8_YsoP32iJwTP0jt3Owd5jmgfLbnDnaS3uFu9pZFeLtyvEbh88TonYNsQjeghxus_CLhymZR78jp1P0zhYXOXpTfFqi2Ois6fztPjx-dNd97W8_v7lsju_Lm3F67lsHVEvZQ3K9tbqvtFgK-XA9aJXUjoSqupb57bYK9G6vI264uAaUUttqRXytLg8-rqAezPF4YDxwQQczONFiDuDMc8zkrHYgCUEEBoqDbkBNS1Cq5XUqraYvd4fvaYY_iyUZrMPS_T5-0Y0AnjTiEpnlTiqbAwpRdo-dwVu1gjNY4RmjdA8RZihd0doIKJnQGdHqaX8B6HomUE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621066249</pqid></control><display><type>article</type><title>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lone, Aijaz H. ; Amara, S. ; Fariborzi, H.</creator><creatorcontrib>Lone, Aijaz H. ; Amara, S. ; Fariborzi, H.</creatorcontrib><description>This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm.</description><identifier>ISSN: 2329-9231</identifier><identifier>EISSN: 2329-9231</identifier><identifier>DOI: 10.1109/JXCDC.2021.3138038</identifier><identifier>CODEN: IJESQ5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Domain wall motion (DWM) ; Domain walls ; Electric fields ; Electric potential ; Green's functions ; Magnetic anisotropy ; magnetic tunnel junction (MTJ) ; Magnetic tunneling ; Micromagnetics ; Neuromorphic computing ; Neurons ; Notches ; Orbits ; pattern recognition ; Pinning ; Pulse duration ; spin orbit torque ; Synapses ; thermal effects ; Thermal noise ; Torque ; Tunnel junctions ; Voltage ; Voltage control ; voltage-controlled neuron</subject><ispartof>IEEE journal on exploratory solid-state computational devices and circuits, 2022-06, Vol.8 (1), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</citedby><cites>FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</cites><orcidid>0000-0002-7828-0239 ; 0000-0002-0131-1703 ; 0000-0002-1687-2917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9662393$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lone, Aijaz H.</creatorcontrib><creatorcontrib>Amara, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><title>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</title><title>IEEE journal on exploratory solid-state computational devices and circuits</title><addtitle>JXCDC</addtitle><description>This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm.</description><subject>Algorithms</subject><subject>Domain wall motion (DWM)</subject><subject>Domain walls</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Green's functions</subject><subject>Magnetic anisotropy</subject><subject>magnetic tunnel junction (MTJ)</subject><subject>Magnetic tunneling</subject><subject>Micromagnetics</subject><subject>Neuromorphic computing</subject><subject>Neurons</subject><subject>Notches</subject><subject>Orbits</subject><subject>pattern recognition</subject><subject>Pinning</subject><subject>Pulse duration</subject><subject>spin orbit torque</subject><subject>Synapses</subject><subject>thermal effects</subject><subject>Thermal noise</subject><subject>Torque</subject><subject>Tunnel junctions</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>voltage-controlled neuron</subject><issn>2329-9231</issn><issn>2329-9231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1u3SAQha2qlRqleYF2g9S1bxmwjVmmTn8SJe0i6c8OjWHuja98wQV7kVfoUxfnRlFXjOB8Z5g5RfEW-AaA6w9Xv7uLbiO4gI0E2XLZvihOhBS61ELCy__q18VZSnvOOdSqUkqfFH9_hnHGHZVd8HMM40iOXYQDDp79wnFkN2Eegi8_YsoP32iJwTP0jt3Owd5jmgfLbnDnaS3uFu9pZFeLtyvEbh88TonYNsQjeghxus_CLhymZR78jp1P0zhYXOXpTfFqi2Ois6fztPjx-dNd97W8_v7lsju_Lm3F67lsHVEvZQ3K9tbqvtFgK-XA9aJXUjoSqupb57bYK9G6vI264uAaUUttqRXytLg8-rqAezPF4YDxwQQczONFiDuDMc8zkrHYgCUEEBoqDbkBNS1Cq5XUqraYvd4fvaYY_iyUZrMPS_T5-0Y0AnjTiEpnlTiqbAwpRdo-dwVu1gjNY4RmjdA8RZihd0doIKJnQGdHqaX8B6HomUE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Lone, Aijaz H.</creator><creator>Amara, S.</creator><creator>Fariborzi, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7828-0239</orcidid><orcidid>https://orcid.org/0000-0002-0131-1703</orcidid><orcidid>https://orcid.org/0000-0002-1687-2917</orcidid></search><sort><creationdate>20220601</creationdate><title>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</title><author>Lone, Aijaz H. ; Amara, S. ; Fariborzi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-8deeb33517cbcc9b691c47d1db2b733de274b8ddfab728d0385401d62539ce823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Domain wall motion (DWM)</topic><topic>Domain walls</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Green's functions</topic><topic>Magnetic anisotropy</topic><topic>magnetic tunnel junction (MTJ)</topic><topic>Magnetic tunneling</topic><topic>Micromagnetics</topic><topic>Neuromorphic computing</topic><topic>Neurons</topic><topic>Notches</topic><topic>Orbits</topic><topic>pattern recognition</topic><topic>Pinning</topic><topic>Pulse duration</topic><topic>spin orbit torque</topic><topic>Synapses</topic><topic>thermal effects</topic><topic>Thermal noise</topic><topic>Torque</topic><topic>Tunnel junctions</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>voltage-controlled neuron</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lone, Aijaz H.</creatorcontrib><creatorcontrib>Amara, S.</creatorcontrib><creatorcontrib>Fariborzi, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal on exploratory solid-state computational devices and circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lone, Aijaz H.</au><au>Amara, S.</au><au>Fariborzi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications</atitle><jtitle>IEEE journal on exploratory solid-state computational devices and circuits</jtitle><stitle>JXCDC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2329-9231</issn><eissn>2329-9231</eissn><coden>IJESQ5</coden><abstract>This work discusses the proposal of a spintronic neuromorphic system with spin orbit torque-driven domain wall motion (DWM)-based neurons and synapses. We propose a voltage-controlled magnetic anisotropy DWM-based magnetic tunnel junction (MTJ) neuron. We investigate how the electric field at the gate (pinning site), generated by the voltage signals from pre-neurons, modulates the DWM, which reflects in the nonlinear switching behavior of neuron magnetization. For the implementation of synaptic weights, we propose a 3-terminal MTJ with stochastic DWM in the free layer. We incorporate intrinsic pinning effects by creating triangular notches on the sides of the free layer. The pinning of the domain wall and intrinsic thermal noise of the device lead to the stochastic behavior of DWM. The control of this stochasticity by the spin orbit torque is shown to realize the potentiation and depression of the synaptic weight. The micromagnetics and spin transport studies in synapses and neurons are carried out by developing a coupled micromagnetic non-equilibrium Green's function ( MuMag-NEGF ) model. The minimization of the writing current pulsewidth by leveraging the thermal noise and demagnetization energy is also presented. Finally, we discuss the implementation of digit recognition by the proposed system using a spike time-dependent algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JXCDC.2021.3138038</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7828-0239</orcidid><orcidid>https://orcid.org/0000-0002-0131-1703</orcidid><orcidid>https://orcid.org/0000-0002-1687-2917</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-9231
ispartof IEEE journal on exploratory solid-state computational devices and circuits, 2022-06, Vol.8 (1), p.1-9
issn 2329-9231
2329-9231
language eng
recordid cdi_crossref_primary_10_1109_JXCDC_2021_3138038
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Domain wall motion (DWM)
Domain walls
Electric fields
Electric potential
Green's functions
Magnetic anisotropy
magnetic tunnel junction (MTJ)
Magnetic tunneling
Micromagnetics
Neuromorphic computing
Neurons
Notches
Orbits
pattern recognition
Pinning
Pulse duration
spin orbit torque
Synapses
thermal effects
Thermal noise
Torque
Tunnel junctions
Voltage
Voltage control
voltage-controlled neuron
title Voltage-Controlled Domain Wall Motion-Based Neuron and Stochastic Magnetic Tunnel Junction Synapse for Neuromorphic Computing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-Controlled%20Domain%20Wall%20Motion-Based%20Neuron%20and%20Stochastic%20Magnetic%20Tunnel%20Junction%20Synapse%20for%20Neuromorphic%20Computing%20Applications&rft.jtitle=IEEE%20journal%20on%20exploratory%20solid-state%20computational%20devices%20and%20circuits&rft.au=Lone,%20Aijaz%20H.&rft.date=2022-06-01&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2329-9231&rft.eissn=2329-9231&rft.coden=IJESQ5&rft_id=info:doi/10.1109/JXCDC.2021.3138038&rft_dat=%3Cproquest_cross%3E2621066249%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621066249&rft_id=info:pmid/&rft_ieee_id=9662393&rft_doaj_id=oai_doaj_org_article_ca61cea112914912b7e68a18973975ca&rfr_iscdi=true