Implementation of Boolean Functions Using Tunnel Field-Effect Transistors

Tunnel field-effect transistors (TFETs) are being examined as a possible replacement of MOSFETs for digital applications. However, TFETs have small ON-state current and, typically, exhibit reduced speed compared with conventional MOSFETs. Nevertheless, TFETs have some distinct characteristics that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on exploratory solid-state computational devices and circuits 2020-12, Vol.6 (2), p.146-154
Hauptverfasser: Garg, S., Saurabh, Sneh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 2
container_start_page 146
container_title IEEE journal on exploratory solid-state computational devices and circuits
container_volume 6
creator Garg, S.
Saurabh, Sneh
description Tunnel field-effect transistors (TFETs) are being examined as a possible replacement of MOSFETs for digital applications. However, TFETs have small ON-state current and, typically, exhibit reduced speed compared with conventional MOSFETs. Nevertheless, TFETs have some distinct characteristics that can be exploited for digital applications. In this article, using simulations, we show that a single device, in which two terminals are biased independently, can realize all primary two-input Boolean functions, such as AND, OR, NAND, NOR, XOR, and XNOR. By modifying the architecture of double-gate TFET (DGTFET) slightly and appropriately choosing device parameters, the Boolean functions AND, OR, NAND, NOR, and XNOR can be implemented. In addition, we propose a twin double-gate (TDG) TFET architecture, which can implement the inhibition functions A'B and AB' . By suitably combining the inhibition functions, an XOR functionality can be obtained in a single device. These implementations demonstrate that the unique characteristics of TFET, such as ambipolar conduction and dependence of tunneling on the gate-source/drain overlaps, can be exploited to realize logic functions compactly.
doi_str_mv 10.1109/JXCDC.2020.3038073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JXCDC_2020_3038073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9259029</ieee_id><doaj_id>oai_doaj_org_article_50d0c84061164c3cb8958d3805a267dd</doaj_id><sourcerecordid>2486593199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-9ea9e5eccf88df06e820285c78f6dc01392abb75bdae8855a7f3d41d855039843</originalsourceid><addsrcrecordid>eNpNUU1LAzEUXETBov0DelnwvPUl2ewmR62tVgpeWvAW0uSlbNkmNdke_PduPyie3vCYmTe8ybIHAiNCQD5_fo_fxiMKFEYMmICaXWUDyqgsJGXk-h--zYYpbQCA8LqsaznIZrPtrsUt-k53TfB5cPlrCC1qn0_33hx2KV-mxq_zxd57bPNpg60tJs6h6fJF1D41qQsx3Wc3TrcJh-d5ly2nk8X4o5h_vc_GL_PClMC7QqKWyNEYJ4R1UKHogwtuauEqa4AwSfVqVfOV1SgE57p2zJbE9hCYFCW7y2YnXxv0Ru1is9XxVwXdqOMixLXSsWtMi4qDBSNKqAipSsPMSkgubP8hrmlVW9t7PZ28djH87DF1ahP20ffxFS1FxSUjUvYsemKZGFKK6C5XCahDA-rYgDo0oM4N9KLHk6hBxItAUi6BSvYHYiaAlg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486593199</pqid></control><display><type>article</type><title>Implementation of Boolean Functions Using Tunnel Field-Effect Transistors</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Garg, S. ; Saurabh, Sneh</creator><creatorcontrib>Garg, S. ; Saurabh, Sneh</creatorcontrib><description><![CDATA[Tunnel field-effect transistors (TFETs) are being examined as a possible replacement of MOSFETs for digital applications. However, TFETs have small ON-state current and, typically, exhibit reduced speed compared with conventional MOSFETs. Nevertheless, TFETs have some distinct characteristics that can be exploited for digital applications. In this article, using simulations, we show that a single device, in which two terminals are biased independently, can realize all primary two-input Boolean functions, such as AND, OR, NAND, NOR, XOR, and XNOR. By modifying the architecture of double-gate TFET (DGTFET) slightly and appropriately choosing device parameters, the Boolean functions AND, OR, NAND, NOR, and XNOR can be implemented. In addition, we propose a twin double-gate (TDG) TFET architecture, which can implement the inhibition functions <inline-formula> <tex-math notation="LaTeX">A'B </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">AB' </tex-math></inline-formula>. By suitably combining the inhibition functions, an XOR functionality can be obtained in a single device. These implementations demonstrate that the unique characteristics of TFET, such as ambipolar conduction and dependence of tunneling on the gate-source/drain overlaps, can be exploited to realize logic functions compactly.]]></description><identifier>ISSN: 2329-9231</identifier><identifier>EISSN: 2329-9231</identifier><identifier>DOI: 10.1109/JXCDC.2020.3038073</identifier><identifier>CODEN: IJESQ5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Boolean ; Boolean algebra ; Boolean functions ; Double-gate FETs ; Double-gate tunnel field-effect transistor (FET) ; Field effect transistors ; independent gate control ; Integrated circuit modeling ; Logic functions ; Logic gates ; MOSFET ; MOSFETs ; on-state current to off-state current ratio ; Semiconductor devices ; TFETs ; Transistors ; Tunneling ; twin double-gate (TDG) structure ; two-variable Boolean functions</subject><ispartof>IEEE journal on exploratory solid-state computational devices and circuits, 2020-12, Vol.6 (2), p.146-154</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-9ea9e5eccf88df06e820285c78f6dc01392abb75bdae8855a7f3d41d855039843</citedby><cites>FETCH-LOGICAL-c405t-9ea9e5eccf88df06e820285c78f6dc01392abb75bdae8855a7f3d41d855039843</cites><orcidid>0000-0002-6807-7544 ; 0000-0002-0587-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9259029$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Garg, S.</creatorcontrib><creatorcontrib>Saurabh, Sneh</creatorcontrib><title>Implementation of Boolean Functions Using Tunnel Field-Effect Transistors</title><title>IEEE journal on exploratory solid-state computational devices and circuits</title><addtitle>JXCDC</addtitle><description><![CDATA[Tunnel field-effect transistors (TFETs) are being examined as a possible replacement of MOSFETs for digital applications. However, TFETs have small ON-state current and, typically, exhibit reduced speed compared with conventional MOSFETs. Nevertheless, TFETs have some distinct characteristics that can be exploited for digital applications. In this article, using simulations, we show that a single device, in which two terminals are biased independently, can realize all primary two-input Boolean functions, such as AND, OR, NAND, NOR, XOR, and XNOR. By modifying the architecture of double-gate TFET (DGTFET) slightly and appropriately choosing device parameters, the Boolean functions AND, OR, NAND, NOR, and XNOR can be implemented. In addition, we propose a twin double-gate (TDG) TFET architecture, which can implement the inhibition functions <inline-formula> <tex-math notation="LaTeX">A'B </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">AB' </tex-math></inline-formula>. By suitably combining the inhibition functions, an XOR functionality can be obtained in a single device. These implementations demonstrate that the unique characteristics of TFET, such as ambipolar conduction and dependence of tunneling on the gate-source/drain overlaps, can be exploited to realize logic functions compactly.]]></description><subject>Boolean</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Double-gate FETs</subject><subject>Double-gate tunnel field-effect transistor (FET)</subject><subject>Field effect transistors</subject><subject>independent gate control</subject><subject>Integrated circuit modeling</subject><subject>Logic functions</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>on-state current to off-state current ratio</subject><subject>Semiconductor devices</subject><subject>TFETs</subject><subject>Transistors</subject><subject>Tunneling</subject><subject>twin double-gate (TDG) structure</subject><subject>two-variable Boolean functions</subject><issn>2329-9231</issn><issn>2329-9231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEUXETBov0DelnwvPUl2ewmR62tVgpeWvAW0uSlbNkmNdke_PduPyie3vCYmTe8ybIHAiNCQD5_fo_fxiMKFEYMmICaXWUDyqgsJGXk-h--zYYpbQCA8LqsaznIZrPtrsUt-k53TfB5cPlrCC1qn0_33hx2KV-mxq_zxd57bPNpg60tJs6h6fJF1D41qQsx3Wc3TrcJh-d5ly2nk8X4o5h_vc_GL_PClMC7QqKWyNEYJ4R1UKHogwtuauEqa4AwSfVqVfOV1SgE57p2zJbE9hCYFCW7y2YnXxv0Ru1is9XxVwXdqOMixLXSsWtMi4qDBSNKqAipSsPMSkgubP8hrmlVW9t7PZ28djH87DF1ahP20ffxFS1FxSUjUvYsemKZGFKK6C5XCahDA-rYgDo0oM4N9KLHk6hBxItAUi6BSvYHYiaAlg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Garg, S.</creator><creator>Saurabh, Sneh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6807-7544</orcidid><orcidid>https://orcid.org/0000-0002-0587-3391</orcidid></search><sort><creationdate>20201201</creationdate><title>Implementation of Boolean Functions Using Tunnel Field-Effect Transistors</title><author>Garg, S. ; Saurabh, Sneh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-9ea9e5eccf88df06e820285c78f6dc01392abb75bdae8855a7f3d41d855039843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boolean</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Double-gate FETs</topic><topic>Double-gate tunnel field-effect transistor (FET)</topic><topic>Field effect transistors</topic><topic>independent gate control</topic><topic>Integrated circuit modeling</topic><topic>Logic functions</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>on-state current to off-state current ratio</topic><topic>Semiconductor devices</topic><topic>TFETs</topic><topic>Transistors</topic><topic>Tunneling</topic><topic>twin double-gate (TDG) structure</topic><topic>two-variable Boolean functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garg, S.</creatorcontrib><creatorcontrib>Saurabh, Sneh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal on exploratory solid-state computational devices and circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, S.</au><au>Saurabh, Sneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of Boolean Functions Using Tunnel Field-Effect Transistors</atitle><jtitle>IEEE journal on exploratory solid-state computational devices and circuits</jtitle><stitle>JXCDC</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>146</spage><epage>154</epage><pages>146-154</pages><issn>2329-9231</issn><eissn>2329-9231</eissn><coden>IJESQ5</coden><abstract><![CDATA[Tunnel field-effect transistors (TFETs) are being examined as a possible replacement of MOSFETs for digital applications. However, TFETs have small ON-state current and, typically, exhibit reduced speed compared with conventional MOSFETs. Nevertheless, TFETs have some distinct characteristics that can be exploited for digital applications. In this article, using simulations, we show that a single device, in which two terminals are biased independently, can realize all primary two-input Boolean functions, such as AND, OR, NAND, NOR, XOR, and XNOR. By modifying the architecture of double-gate TFET (DGTFET) slightly and appropriately choosing device parameters, the Boolean functions AND, OR, NAND, NOR, and XNOR can be implemented. In addition, we propose a twin double-gate (TDG) TFET architecture, which can implement the inhibition functions <inline-formula> <tex-math notation="LaTeX">A'B </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">AB' </tex-math></inline-formula>. By suitably combining the inhibition functions, an XOR functionality can be obtained in a single device. These implementations demonstrate that the unique characteristics of TFET, such as ambipolar conduction and dependence of tunneling on the gate-source/drain overlaps, can be exploited to realize logic functions compactly.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JXCDC.2020.3038073</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6807-7544</orcidid><orcidid>https://orcid.org/0000-0002-0587-3391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-9231
ispartof IEEE journal on exploratory solid-state computational devices and circuits, 2020-12, Vol.6 (2), p.146-154
issn 2329-9231
2329-9231
language eng
recordid cdi_crossref_primary_10_1109_JXCDC_2020_3038073
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Boolean
Boolean algebra
Boolean functions
Double-gate FETs
Double-gate tunnel field-effect transistor (FET)
Field effect transistors
independent gate control
Integrated circuit modeling
Logic functions
Logic gates
MOSFET
MOSFETs
on-state current to off-state current ratio
Semiconductor devices
TFETs
Transistors
Tunneling
twin double-gate (TDG) structure
two-variable Boolean functions
title Implementation of Boolean Functions Using Tunnel Field-Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20Boolean%20Functions%20Using%20Tunnel%20Field-Effect%20Transistors&rft.jtitle=IEEE%20journal%20on%20exploratory%20solid-state%20computational%20devices%20and%20circuits&rft.au=Garg,%20S.&rft.date=2020-12-01&rft.volume=6&rft.issue=2&rft.spage=146&rft.epage=154&rft.pages=146-154&rft.issn=2329-9231&rft.eissn=2329-9231&rft.coden=IJESQ5&rft_id=info:doi/10.1109/JXCDC.2020.3038073&rft_dat=%3Cproquest_cross%3E2486593199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486593199&rft_id=info:pmid/&rft_ieee_id=9259029&rft_doaj_id=oai_doaj_org_article_50d0c84061164c3cb8958d3805a267dd&rfr_iscdi=true