Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements

Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2022-12, Vol.16 (4), p.6524-6534
Hauptverfasser: Li, Jiang, Gao, Ming, Liu, Bo, Cai, Yinong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6534
container_issue 4
container_start_page 6524
container_title IEEE systems journal
container_volume 16
creator Li, Jiang
Gao, Ming
Liu, Bo
Cai, Yinong
description Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement.
doi_str_mv 10.1109/JSYST.2022.3150968
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2022_3150968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737561</ieee_id><sourcerecordid>2748565297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</originalsourceid><addsrcrecordid>eNo9kEtOwzAQhi0EEqVwAdhEYp1iO7FjL6vS8lALiDYL2FiuM0YpNGltR8DdOANnIn2I1Yw0_zej-RA6J7hHCJZX99OX6axHMaW9hDAsuThAHSKTLJY0SQ-3PY0FEekxOvF-gTETLJMd9DqqHRjtQ1m9Rf2ygCK6Ln1w5bwJZV1FDxA-a_ceTYMOEA3b3FJvB7nfEJPyqyV-f54mefw8y6MJaN84WEIV_Ck6svrDw9m-dlE-Gs4Gt_H48eZu0B_HhkoWYs6sNZboOUsZtYURheHMEF5oMJwANlRToEKn6VxYzqWQUHBNWZEYklliki663O1duXrdgA9qUTeuak8qmqWCcUZl1qboLmVc7b0Dq1au_cV9K4LVxqHaOlQbh2rvsIUudlAJAP9Auy1jnCR_nEVv0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748565297</pqid></control><display><type>article</type><title>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jiang ; Gao, Ming ; Liu, Bo ; Cai, Yinong</creator><creatorcontrib>Li, Jiang ; Gao, Ming ; Liu, Bo ; Cai, Yinong</creatorcontrib><description>Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2022.3150968</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Cubature Kalman filter ; Current measurement ; data imputation ; Distribution networks ; Energy management systems ; Forecasting ; Kalman filters ; Mathematical models ; microphasor measurement unit ; Numerical stability ; Open wireless architecture ; Phasor measurement units ; remote terminal unit ; State estimation ; System effectiveness ; Units of measurement ; Voltage measurement</subject><ispartof>IEEE systems journal, 2022-12, Vol.16 (4), p.6524-6534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</citedby><cites>FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</cites><orcidid>0000-0002-8208-912X ; 0000-0003-1936-8721 ; 0000-0002-8804-1741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9737561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cai, Yinong</creatorcontrib><title>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement.</description><subject>Accuracy</subject><subject>Cubature Kalman filter</subject><subject>Current measurement</subject><subject>data imputation</subject><subject>Distribution networks</subject><subject>Energy management systems</subject><subject>Forecasting</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>microphasor measurement unit</subject><subject>Numerical stability</subject><subject>Open wireless architecture</subject><subject>Phasor measurement units</subject><subject>remote terminal unit</subject><subject>State estimation</subject><subject>System effectiveness</subject><subject>Units of measurement</subject><subject>Voltage measurement</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtOwzAQhi0EEqVwAdhEYp1iO7FjL6vS8lALiDYL2FiuM0YpNGltR8DdOANnIn2I1Yw0_zej-RA6J7hHCJZX99OX6axHMaW9hDAsuThAHSKTLJY0SQ-3PY0FEekxOvF-gTETLJMd9DqqHRjtQ1m9Rf2ygCK6Ln1w5bwJZV1FDxA-a_ceTYMOEA3b3FJvB7nfEJPyqyV-f54mefw8y6MJaN84WEIV_Ck6svrDw9m-dlE-Gs4Gt_H48eZu0B_HhkoWYs6sNZboOUsZtYURheHMEF5oMJwANlRToEKn6VxYzqWQUHBNWZEYklliki663O1duXrdgA9qUTeuak8qmqWCcUZl1qboLmVc7b0Dq1au_cV9K4LVxqHaOlQbh2rvsIUudlAJAP9Auy1jnCR_nEVv0w</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Li, Jiang</creator><creator>Gao, Ming</creator><creator>Liu, Bo</creator><creator>Cai, Yinong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8208-912X</orcidid><orcidid>https://orcid.org/0000-0003-1936-8721</orcidid><orcidid>https://orcid.org/0000-0002-8804-1741</orcidid></search><sort><creationdate>202212</creationdate><title>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</title><author>Li, Jiang ; Gao, Ming ; Liu, Bo ; Cai, Yinong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Cubature Kalman filter</topic><topic>Current measurement</topic><topic>data imputation</topic><topic>Distribution networks</topic><topic>Energy management systems</topic><topic>Forecasting</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>microphasor measurement unit</topic><topic>Numerical stability</topic><topic>Open wireless architecture</topic><topic>Phasor measurement units</topic><topic>remote terminal unit</topic><topic>State estimation</topic><topic>System effectiveness</topic><topic>Units of measurement</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cai, Yinong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jiang</au><au>Gao, Ming</au><au>Liu, Bo</au><au>Cai, Yinong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-12</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>6524</spage><epage>6534</epage><pages>6524-6534</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2022.3150968</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8208-912X</orcidid><orcidid>https://orcid.org/0000-0003-1936-8721</orcidid><orcidid>https://orcid.org/0000-0002-8804-1741</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2022-12, Vol.16 (4), p.6524-6534
issn 1932-8184
1937-9234
language eng
recordid cdi_crossref_primary_10_1109_JSYST_2022_3150968
source IEEE Electronic Library (IEL)
subjects Accuracy
Cubature Kalman filter
Current measurement
data imputation
Distribution networks
Energy management systems
Forecasting
Kalman filters
Mathematical models
microphasor measurement unit
Numerical stability
Open wireless architecture
Phasor measurement units
remote terminal unit
State estimation
System effectiveness
Units of measurement
Voltage measurement
title Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Aided%20Distribution%20Network%20State%20Estimation%20Using%20Mixed%20%CE%BCPMU-RTU%20Measurements&rft.jtitle=IEEE%20systems%20journal&rft.au=Li,%20Jiang&rft.date=2022-12&rft.volume=16&rft.issue=4&rft.spage=6524&rft.epage=6534&rft.pages=6524-6534&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2022.3150968&rft_dat=%3Cproquest_RIE%3E2748565297%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748565297&rft_id=info:pmid/&rft_ieee_id=9737561&rfr_iscdi=true