Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements
Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks wit...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2022-12, Vol.16 (4), p.6524-6534 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6534 |
---|---|
container_issue | 4 |
container_start_page | 6524 |
container_title | IEEE systems journal |
container_volume | 16 |
creator | Li, Jiang Gao, Ming Liu, Bo Cai, Yinong |
description | Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement. |
doi_str_mv | 10.1109/JSYST.2022.3150968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2022_3150968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9737561</ieee_id><sourcerecordid>2748565297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</originalsourceid><addsrcrecordid>eNo9kEtOwzAQhi0EEqVwAdhEYp1iO7FjL6vS8lALiDYL2FiuM0YpNGltR8DdOANnIn2I1Yw0_zej-RA6J7hHCJZX99OX6axHMaW9hDAsuThAHSKTLJY0SQ-3PY0FEekxOvF-gTETLJMd9DqqHRjtQ1m9Rf2ygCK6Ln1w5bwJZV1FDxA-a_ceTYMOEA3b3FJvB7nfEJPyqyV-f54mefw8y6MJaN84WEIV_Ck6svrDw9m-dlE-Gs4Gt_H48eZu0B_HhkoWYs6sNZboOUsZtYURheHMEF5oMJwANlRToEKn6VxYzqWQUHBNWZEYklliki663O1duXrdgA9qUTeuak8qmqWCcUZl1qboLmVc7b0Dq1au_cV9K4LVxqHaOlQbh2rvsIUudlAJAP9Auy1jnCR_nEVv0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748565297</pqid></control><display><type>article</type><title>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Jiang ; Gao, Ming ; Liu, Bo ; Cai, Yinong</creator><creatorcontrib>Li, Jiang ; Gao, Ming ; Liu, Bo ; Cai, Yinong</creatorcontrib><description>Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2022.3150968</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Cubature Kalman filter ; Current measurement ; data imputation ; Distribution networks ; Energy management systems ; Forecasting ; Kalman filters ; Mathematical models ; microphasor measurement unit ; Numerical stability ; Open wireless architecture ; Phasor measurement units ; remote terminal unit ; State estimation ; System effectiveness ; Units of measurement ; Voltage measurement</subject><ispartof>IEEE systems journal, 2022-12, Vol.16 (4), p.6524-6534</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</citedby><cites>FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</cites><orcidid>0000-0002-8208-912X ; 0000-0003-1936-8721 ; 0000-0002-8804-1741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9737561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9737561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cai, Yinong</creatorcontrib><title>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement.</description><subject>Accuracy</subject><subject>Cubature Kalman filter</subject><subject>Current measurement</subject><subject>data imputation</subject><subject>Distribution networks</subject><subject>Energy management systems</subject><subject>Forecasting</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>microphasor measurement unit</subject><subject>Numerical stability</subject><subject>Open wireless architecture</subject><subject>Phasor measurement units</subject><subject>remote terminal unit</subject><subject>State estimation</subject><subject>System effectiveness</subject><subject>Units of measurement</subject><subject>Voltage measurement</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtOwzAQhi0EEqVwAdhEYp1iO7FjL6vS8lALiDYL2FiuM0YpNGltR8DdOANnIn2I1Yw0_zej-RA6J7hHCJZX99OX6axHMaW9hDAsuThAHSKTLJY0SQ-3PY0FEekxOvF-gTETLJMd9DqqHRjtQ1m9Rf2ygCK6Ln1w5bwJZV1FDxA-a_ceTYMOEA3b3FJvB7nfEJPyqyV-f54mefw8y6MJaN84WEIV_Ck6svrDw9m-dlE-Gs4Gt_H48eZu0B_HhkoWYs6sNZboOUsZtYURheHMEF5oMJwANlRToEKn6VxYzqWQUHBNWZEYklliki663O1duXrdgA9qUTeuak8qmqWCcUZl1qboLmVc7b0Dq1au_cV9K4LVxqHaOlQbh2rvsIUudlAJAP9Auy1jnCR_nEVv0w</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Li, Jiang</creator><creator>Gao, Ming</creator><creator>Liu, Bo</creator><creator>Cai, Yinong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8208-912X</orcidid><orcidid>https://orcid.org/0000-0003-1936-8721</orcidid><orcidid>https://orcid.org/0000-0002-8804-1741</orcidid></search><sort><creationdate>202212</creationdate><title>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</title><author>Li, Jiang ; Gao, Ming ; Liu, Bo ; Cai, Yinong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-65ffcf1ab5452fdc8dc65c16daec61e0c2a2e28a44b8f66989ed6a25d3c17f1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Cubature Kalman filter</topic><topic>Current measurement</topic><topic>data imputation</topic><topic>Distribution networks</topic><topic>Energy management systems</topic><topic>Forecasting</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>microphasor measurement unit</topic><topic>Numerical stability</topic><topic>Open wireless architecture</topic><topic>Phasor measurement units</topic><topic>remote terminal unit</topic><topic>State estimation</topic><topic>System effectiveness</topic><topic>Units of measurement</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Gao, Ming</creatorcontrib><creatorcontrib>Liu, Bo</creatorcontrib><creatorcontrib>Cai, Yinong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Jiang</au><au>Gao, Ming</au><au>Liu, Bo</au><au>Cai, Yinong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-12</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>6524</spage><epage>6534</epage><pages>6524-6534</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Distribution network state estimation is the backbone of energy management systems, whose accuracy and adaptability are very important for the advanced application software in distribution networks. This article proposes a novel forecasting-aided state estimation method for distribution networks with the mixed measurements of microphasor measurement unit (μPMU) and remote terminal unit (RTU). First of all, the data imputation techniques for RTU with a longer update period are proposed to handle asynchronous characteristics and improve computational accuracy using historical and current measurements. Then, the measurement equations are built to process the different types of measurement data from μPMU and RTU. The cubature Kalman filter is adopted to ensure the numerical stability of state forecasting, measurement forecasting, and filter correction. Finally, the IEEE 33- and 37-node systems are applied to verify the effectiveness of the proposed method, which can get an accurate state under mixed measurement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2022.3150968</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8208-912X</orcidid><orcidid>https://orcid.org/0000-0003-1936-8721</orcidid><orcidid>https://orcid.org/0000-0002-8804-1741</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2022-12, Vol.16 (4), p.6524-6534 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSYST_2022_3150968 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Cubature Kalman filter Current measurement data imputation Distribution networks Energy management systems Forecasting Kalman filters Mathematical models microphasor measurement unit Numerical stability Open wireless architecture Phasor measurement units remote terminal unit State estimation System effectiveness Units of measurement Voltage measurement |
title | Forecasting Aided Distribution Network State Estimation Using Mixed μPMU-RTU Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Aided%20Distribution%20Network%20State%20Estimation%20Using%20Mixed%20%CE%BCPMU-RTU%20Measurements&rft.jtitle=IEEE%20systems%20journal&rft.au=Li,%20Jiang&rft.date=2022-12&rft.volume=16&rft.issue=4&rft.spage=6524&rft.epage=6534&rft.pages=6524-6534&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2022.3150968&rft_dat=%3Cproquest_RIE%3E2748565297%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748565297&rft_id=info:pmid/&rft_ieee_id=9737561&rfr_iscdi=true |