Securing Transmission for UAV Swarm-Enabled Communication Network

Deploying unmanned aerial vehicles (UAVs) in communication networks could achieve desirable degrees of freedom, but resulting from the high line-of-sight link attributes, security threats faced by UAV communications are serious. Taking that into consideration, we focus on a UAV swarm-enabled communi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2022-12, Vol.16 (4), p.5200-5211
Hauptverfasser: Dong, Runze, Wang, Buhong, Cao, Kunrui, Cheng, Tianhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5211
container_issue 4
container_start_page 5200
container_title IEEE systems journal
container_volume 16
creator Dong, Runze
Wang, Buhong
Cao, Kunrui
Cheng, Tianhao
description Deploying unmanned aerial vehicles (UAVs) in communication networks could achieve desirable degrees of freedom, but resulting from the high line-of-sight link attributes, security threats faced by UAV communications are serious. Taking that into consideration, we focus on a UAV swarm-enabled communication network in this article, where a fixed-wing UAV acts as a legitimate user and a neighboring UAV eavesdropper attempts to eavesdrop the confidential information forwarded by rotary-wing UAV relays. In particular, we jointly optimize transmit power on the base station and UAV relays, power allocation coefficient and beamforming on UAV relays, and trajectory of the fixed-wing UAV to maximize the average secrecy rate. Due to the nonconvexity of the optimization problem, the block coordinate descent method is utilized to solve it. Specifically, the overall optimizing problem is divided into four subproblems in which the transmit power, power allocation coefficient, beamforming vector, and the trajectory of user are optimized, respectively. By employing the successive convex approximate method, subproblems are transformed to convex problems which are numerically tractable. Numerical simulations validate the effectiveness of the proposed algorithm and show that compared with benchmark schemes, the considered transmission scheme with artificial noise and optimized network parameters can improve secrecy rate by about 13.8%.
doi_str_mv 10.1109/JSYST.2021.3111746
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2021_3111746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9552611</ieee_id><sourcerecordid>2748565849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b56e85bf68fc34b1cfcbc75094804ee4c80ee2c6b0c42fea4eebc2a46c7da2763</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8KXrcmaZIml2PML4ZedBO8Ckl2Kp1rM5OW4b-3-8Cr83J43nPgQeiW4IwQrB5ey89ykVFMSZYTQgomztCIqLxIFc3Z-SHTVBLJLtFVjGuMueSFGqFJCa4PdfuVLIJpY1PHWPs2qXxIlpOPpNyZ0KSz1tgNrJKpb5q-rZ3p9swbdDsfvq_RRWU2EW5Oc4yWj7PF9Dmdvz-9TCfz1FHFu9RyAZLbSsjK5cwSVznrCo4Vk5gBMCcxAHXCYsdoBWbYWUcNE65YGVqIfIzuj3e3wf_0EDu99n1oh5eaFkxywSVTA0WPlAs-xgCV3oa6MeFXE6z3qvRBld6r0idVQ-nuWKoB4L-gOKeCkPwP049mGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748565849</pqid></control><display><type>article</type><title>Securing Transmission for UAV Swarm-Enabled Communication Network</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Runze ; Wang, Buhong ; Cao, Kunrui ; Cheng, Tianhao</creator><creatorcontrib>Dong, Runze ; Wang, Buhong ; Cao, Kunrui ; Cheng, Tianhao</creatorcontrib><description>Deploying unmanned aerial vehicles (UAVs) in communication networks could achieve desirable degrees of freedom, but resulting from the high line-of-sight link attributes, security threats faced by UAV communications are serious. Taking that into consideration, we focus on a UAV swarm-enabled communication network in this article, where a fixed-wing UAV acts as a legitimate user and a neighboring UAV eavesdropper attempts to eavesdrop the confidential information forwarded by rotary-wing UAV relays. In particular, we jointly optimize transmit power on the base station and UAV relays, power allocation coefficient and beamforming on UAV relays, and trajectory of the fixed-wing UAV to maximize the average secrecy rate. Due to the nonconvexity of the optimization problem, the block coordinate descent method is utilized to solve it. Specifically, the overall optimizing problem is divided into four subproblems in which the transmit power, power allocation coefficient, beamforming vector, and the trajectory of user are optimized, respectively. By employing the successive convex approximate method, subproblems are transformed to convex problems which are numerically tractable. Numerical simulations validate the effectiveness of the proposed algorithm and show that compared with benchmark schemes, the considered transmission scheme with artificial noise and optimized network parameters can improve secrecy rate by about 13.8%.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2021.3111746</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antenna arrays ; Array signal processing ; Artificial noise (AN) ; Autonomous aerial vehicles ; Base stations ; Beamforming ; block coordinate descent ; Communication ; Communication networks ; Communications networks ; Eavesdropping ; Fixed wings ; Line of sight communication ; Optimization ; Particle swarm optimization ; physical layer security ; Relays ; Trajectory ; trajectory optimization ; unmanned aerial vehicle (UAV) swarm ; Unmanned aerial vehicles</subject><ispartof>IEEE systems journal, 2022-12, Vol.16 (4), p.5200-5211</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b56e85bf68fc34b1cfcbc75094804ee4c80ee2c6b0c42fea4eebc2a46c7da2763</citedby><cites>FETCH-LOGICAL-c295t-b56e85bf68fc34b1cfcbc75094804ee4c80ee2c6b0c42fea4eebc2a46c7da2763</cites><orcidid>0000-0002-7737-4639 ; 0000-0002-7261-8331 ; 0000-0003-1950-6901 ; 0000-0001-7425-0502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9552611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9552611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong, Runze</creatorcontrib><creatorcontrib>Wang, Buhong</creatorcontrib><creatorcontrib>Cao, Kunrui</creatorcontrib><creatorcontrib>Cheng, Tianhao</creatorcontrib><title>Securing Transmission for UAV Swarm-Enabled Communication Network</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Deploying unmanned aerial vehicles (UAVs) in communication networks could achieve desirable degrees of freedom, but resulting from the high line-of-sight link attributes, security threats faced by UAV communications are serious. Taking that into consideration, we focus on a UAV swarm-enabled communication network in this article, where a fixed-wing UAV acts as a legitimate user and a neighboring UAV eavesdropper attempts to eavesdrop the confidential information forwarded by rotary-wing UAV relays. In particular, we jointly optimize transmit power on the base station and UAV relays, power allocation coefficient and beamforming on UAV relays, and trajectory of the fixed-wing UAV to maximize the average secrecy rate. Due to the nonconvexity of the optimization problem, the block coordinate descent method is utilized to solve it. Specifically, the overall optimizing problem is divided into four subproblems in which the transmit power, power allocation coefficient, beamforming vector, and the trajectory of user are optimized, respectively. By employing the successive convex approximate method, subproblems are transformed to convex problems which are numerically tractable. Numerical simulations validate the effectiveness of the proposed algorithm and show that compared with benchmark schemes, the considered transmission scheme with artificial noise and optimized network parameters can improve secrecy rate by about 13.8%.</description><subject>Algorithms</subject><subject>Antenna arrays</subject><subject>Array signal processing</subject><subject>Artificial noise (AN)</subject><subject>Autonomous aerial vehicles</subject><subject>Base stations</subject><subject>Beamforming</subject><subject>block coordinate descent</subject><subject>Communication</subject><subject>Communication networks</subject><subject>Communications networks</subject><subject>Eavesdropping</subject><subject>Fixed wings</subject><subject>Line of sight communication</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>physical layer security</subject><subject>Relays</subject><subject>Trajectory</subject><subject>trajectory optimization</subject><subject>unmanned aerial vehicle (UAV) swarm</subject><subject>Unmanned aerial vehicles</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKd_QG8KXrcmaZIml2PML4ZedBO8Ckl2Kp1rM5OW4b-3-8Cr83J43nPgQeiW4IwQrB5ey89ykVFMSZYTQgomztCIqLxIFc3Z-SHTVBLJLtFVjGuMueSFGqFJCa4PdfuVLIJpY1PHWPs2qXxIlpOPpNyZ0KSz1tgNrJKpb5q-rZ3p9swbdDsfvq_RRWU2EW5Oc4yWj7PF9Dmdvz-9TCfz1FHFu9RyAZLbSsjK5cwSVznrCo4Vk5gBMCcxAHXCYsdoBWbYWUcNE65YGVqIfIzuj3e3wf_0EDu99n1oh5eaFkxywSVTA0WPlAs-xgCV3oa6MeFXE6z3qvRBld6r0idVQ-nuWKoB4L-gOKeCkPwP049mGw</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Dong, Runze</creator><creator>Wang, Buhong</creator><creator>Cao, Kunrui</creator><creator>Cheng, Tianhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7737-4639</orcidid><orcidid>https://orcid.org/0000-0002-7261-8331</orcidid><orcidid>https://orcid.org/0000-0003-1950-6901</orcidid><orcidid>https://orcid.org/0000-0001-7425-0502</orcidid></search><sort><creationdate>202212</creationdate><title>Securing Transmission for UAV Swarm-Enabled Communication Network</title><author>Dong, Runze ; Wang, Buhong ; Cao, Kunrui ; Cheng, Tianhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b56e85bf68fc34b1cfcbc75094804ee4c80ee2c6b0c42fea4eebc2a46c7da2763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antenna arrays</topic><topic>Array signal processing</topic><topic>Artificial noise (AN)</topic><topic>Autonomous aerial vehicles</topic><topic>Base stations</topic><topic>Beamforming</topic><topic>block coordinate descent</topic><topic>Communication</topic><topic>Communication networks</topic><topic>Communications networks</topic><topic>Eavesdropping</topic><topic>Fixed wings</topic><topic>Line of sight communication</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>physical layer security</topic><topic>Relays</topic><topic>Trajectory</topic><topic>trajectory optimization</topic><topic>unmanned aerial vehicle (UAV) swarm</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Runze</creatorcontrib><creatorcontrib>Wang, Buhong</creatorcontrib><creatorcontrib>Cao, Kunrui</creatorcontrib><creatorcontrib>Cheng, Tianhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Runze</au><au>Wang, Buhong</au><au>Cao, Kunrui</au><au>Cheng, Tianhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Securing Transmission for UAV Swarm-Enabled Communication Network</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-12</date><risdate>2022</risdate><volume>16</volume><issue>4</issue><spage>5200</spage><epage>5211</epage><pages>5200-5211</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Deploying unmanned aerial vehicles (UAVs) in communication networks could achieve desirable degrees of freedom, but resulting from the high line-of-sight link attributes, security threats faced by UAV communications are serious. Taking that into consideration, we focus on a UAV swarm-enabled communication network in this article, where a fixed-wing UAV acts as a legitimate user and a neighboring UAV eavesdropper attempts to eavesdrop the confidential information forwarded by rotary-wing UAV relays. In particular, we jointly optimize transmit power on the base station and UAV relays, power allocation coefficient and beamforming on UAV relays, and trajectory of the fixed-wing UAV to maximize the average secrecy rate. Due to the nonconvexity of the optimization problem, the block coordinate descent method is utilized to solve it. Specifically, the overall optimizing problem is divided into four subproblems in which the transmit power, power allocation coefficient, beamforming vector, and the trajectory of user are optimized, respectively. By employing the successive convex approximate method, subproblems are transformed to convex problems which are numerically tractable. Numerical simulations validate the effectiveness of the proposed algorithm and show that compared with benchmark schemes, the considered transmission scheme with artificial noise and optimized network parameters can improve secrecy rate by about 13.8%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2021.3111746</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7737-4639</orcidid><orcidid>https://orcid.org/0000-0002-7261-8331</orcidid><orcidid>https://orcid.org/0000-0003-1950-6901</orcidid><orcidid>https://orcid.org/0000-0001-7425-0502</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2022-12, Vol.16 (4), p.5200-5211
issn 1932-8184
1937-9234
language eng
recordid cdi_crossref_primary_10_1109_JSYST_2021_3111746
source IEEE Electronic Library (IEL)
subjects Algorithms
Antenna arrays
Array signal processing
Artificial noise (AN)
Autonomous aerial vehicles
Base stations
Beamforming
block coordinate descent
Communication
Communication networks
Communications networks
Eavesdropping
Fixed wings
Line of sight communication
Optimization
Particle swarm optimization
physical layer security
Relays
Trajectory
trajectory optimization
unmanned aerial vehicle (UAV) swarm
Unmanned aerial vehicles
title Securing Transmission for UAV Swarm-Enabled Communication Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Securing%20Transmission%20for%20UAV%20Swarm-Enabled%20Communication%20Network&rft.jtitle=IEEE%20systems%20journal&rft.au=Dong,%20Runze&rft.date=2022-12&rft.volume=16&rft.issue=4&rft.spage=5200&rft.epage=5211&rft.pages=5200-5211&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2021.3111746&rft_dat=%3Cproquest_RIE%3E2748565849%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748565849&rft_id=info:pmid/&rft_ieee_id=9552611&rfr_iscdi=true