Intelligent Control of Battery Storage for Resiliency Enhancement of Distribution System

Natural disasters and accidents have underscored the need for operative solutions that can enhance the resiliency of power distribution network (PDN). This article proposes novel methods of scheduling of battery energy storage system (BESS) and loads of microgrid to enhance the resiliency of PDN. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2022-06, Vol.16 (2), p.1-11
Hauptverfasser: Mohan, G N V, Bhende, Chandrashekhar N., Srivastava, Anurag K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2
container_start_page 1
container_title IEEE systems journal
container_volume 16
creator Mohan, G N V
Bhende, Chandrashekhar N.
Srivastava, Anurag K.
description Natural disasters and accidents have underscored the need for operative solutions that can enhance the resiliency of power distribution network (PDN). This article proposes novel methods of scheduling of battery energy storage system (BESS) and loads of microgrid to enhance the resiliency of PDN. A mixed-integer linear programming model is developed to minimize the energy mismatch between available resources and critical loads during outage period. The proposed model is aimed at minimizing the shedding of high critical loads (hcl) and maximizing the serving time of hcl during outages. In order to increase the longevity of the load serving, the fuzzy-based approach is developed to control the C_rate of the BESS. Moreover, to increase the resiliency of hcl, partitioning of BESS capacity is proposed, which provides more flexibility for charging/discharging control of the BESS. The concept of variable dispatch interval is introduced to reduce the frequent switching of loads. By considering the reactive power, an apparent power resiliency metric is proposed to quantify the resiliency of PDN. The IEEE 33-bus network is tested under various restoration periods in order to verify the performance of the proposed methodology in the MATLAB environment.
doi_str_mv 10.1109/JSYST.2021.3083757
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2021_3083757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9455050</ieee_id><sourcerecordid>2676778821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-190a97f4b678d04760f772493d871e9987a9038521e9657bcc087e0336ac53f73</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1vzsdlJjlqrVgqCW0FPId1m65Ztokl62H_v9gNP8w68zww8CF1TMqKUqLvX8qucjxhhdMSJ5CDgBA2o4pApxvPTfWaZpDI_RxcxrgkRUoAaoM-pS7Ztm5V1CY-9S8G32Nf4waRkQ4fL5INZWVz7gN9tbNrGuqrDE_dtXGU3O6pvPzYxhWaxTY13uOxisptLdFabNtqr4xyij6fJfPySzd6ep-P7WVYxJVJGFTEK6nxRgFySHApSA7Bc8aUEapWSYBThUrB-KQQsqopIsITzwlSC18CH6PZw9yf4362NSa_9Nrj-pWYFFABSMtq32KFVBR9jsLX-Cc3GhE5ToncG9d6g3hnUR4M9dHOAGmvtP6ByIYgg_A_ygGyD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676778821</pqid></control><display><type>article</type><title>Intelligent Control of Battery Storage for Resiliency Enhancement of Distribution System</title><source>IEEE Electronic Library (IEL)</source><creator>Mohan, G N V ; Bhende, Chandrashekhar N. ; Srivastava, Anurag K.</creator><creatorcontrib>Mohan, G N V ; Bhende, Chandrashekhar N. ; Srivastava, Anurag K.</creatorcontrib><description>Natural disasters and accidents have underscored the need for operative solutions that can enhance the resiliency of power distribution network (PDN). This article proposes novel methods of scheduling of battery energy storage system (BESS) and loads of microgrid to enhance the resiliency of PDN. A mixed-integer linear programming model is developed to minimize the energy mismatch between available resources and critical loads during outage period. The proposed model is aimed at minimizing the shedding of high critical loads (hcl) and maximizing the serving time of hcl during outages. In order to increase the longevity of the load serving, the fuzzy-based approach is developed to control the C_rate of the BESS. Moreover, to increase the resiliency of hcl, partitioning of BESS capacity is proposed, which provides more flexibility for charging/discharging control of the BESS. The concept of variable dispatch interval is introduced to reduce the frequent switching of loads. By considering the reactive power, an apparent power resiliency metric is proposed to quantify the resiliency of PDN. The IEEE 33-bus network is tested under various restoration periods in order to verify the performance of the proposed methodology in the MATLAB environment.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2021.3083757</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Apparent power resiliency metric ; Batteries ; Distributed generation ; Electric power distribution ; Electrical loads ; Energy storage ; Integer programming ; intelligent control ; Linear programming ; Load modeling ; Measurement ; Microgrids ; Mixed integer ; mixed-integer linear program (MILP) ; Natural disasters ; Outages ; Reactive power ; Reliability engineering ; Resilience ; resiliency ; Switches</subject><ispartof>IEEE systems journal, 2022-06, Vol.16 (2), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-190a97f4b678d04760f772493d871e9987a9038521e9657bcc087e0336ac53f73</citedby><cites>FETCH-LOGICAL-c295t-190a97f4b678d04760f772493d871e9987a9038521e9657bcc087e0336ac53f73</cites><orcidid>0000-0003-3518-8018 ; 0000-0003-2930-2582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9455050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9455050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mohan, G N V</creatorcontrib><creatorcontrib>Bhende, Chandrashekhar N.</creatorcontrib><creatorcontrib>Srivastava, Anurag K.</creatorcontrib><title>Intelligent Control of Battery Storage for Resiliency Enhancement of Distribution System</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Natural disasters and accidents have underscored the need for operative solutions that can enhance the resiliency of power distribution network (PDN). This article proposes novel methods of scheduling of battery energy storage system (BESS) and loads of microgrid to enhance the resiliency of PDN. A mixed-integer linear programming model is developed to minimize the energy mismatch between available resources and critical loads during outage period. The proposed model is aimed at minimizing the shedding of high critical loads (hcl) and maximizing the serving time of hcl during outages. In order to increase the longevity of the load serving, the fuzzy-based approach is developed to control the C_rate of the BESS. Moreover, to increase the resiliency of hcl, partitioning of BESS capacity is proposed, which provides more flexibility for charging/discharging control of the BESS. The concept of variable dispatch interval is introduced to reduce the frequent switching of loads. By considering the reactive power, an apparent power resiliency metric is proposed to quantify the resiliency of PDN. The IEEE 33-bus network is tested under various restoration periods in order to verify the performance of the proposed methodology in the MATLAB environment.</description><subject>Apparent power resiliency metric</subject><subject>Batteries</subject><subject>Distributed generation</subject><subject>Electric power distribution</subject><subject>Electrical loads</subject><subject>Energy storage</subject><subject>Integer programming</subject><subject>intelligent control</subject><subject>Linear programming</subject><subject>Load modeling</subject><subject>Measurement</subject><subject>Microgrids</subject><subject>Mixed integer</subject><subject>mixed-integer linear program (MILP)</subject><subject>Natural disasters</subject><subject>Outages</subject><subject>Reactive power</subject><subject>Reliability engineering</subject><subject>Resilience</subject><subject>resiliency</subject><subject>Switches</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt_QC8Bz1vzsdlJjlqrVgqCW0FPId1m65Ztokl62H_v9gNP8w68zww8CF1TMqKUqLvX8qucjxhhdMSJ5CDgBA2o4pApxvPTfWaZpDI_RxcxrgkRUoAaoM-pS7Ztm5V1CY-9S8G32Nf4waRkQ4fL5INZWVz7gN9tbNrGuqrDE_dtXGU3O6pvPzYxhWaxTY13uOxisptLdFabNtqr4xyij6fJfPySzd6ep-P7WVYxJVJGFTEK6nxRgFySHApSA7Bc8aUEapWSYBThUrB-KQQsqopIsITzwlSC18CH6PZw9yf4362NSa_9Nrj-pWYFFABSMtq32KFVBR9jsLX-Cc3GhE5ToncG9d6g3hnUR4M9dHOAGmvtP6ByIYgg_A_ygGyD</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Mohan, G N V</creator><creator>Bhende, Chandrashekhar N.</creator><creator>Srivastava, Anurag K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3518-8018</orcidid><orcidid>https://orcid.org/0000-0003-2930-2582</orcidid></search><sort><creationdate>20220601</creationdate><title>Intelligent Control of Battery Storage for Resiliency Enhancement of Distribution System</title><author>Mohan, G N V ; Bhende, Chandrashekhar N. ; Srivastava, Anurag K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-190a97f4b678d04760f772493d871e9987a9038521e9657bcc087e0336ac53f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apparent power resiliency metric</topic><topic>Batteries</topic><topic>Distributed generation</topic><topic>Electric power distribution</topic><topic>Electrical loads</topic><topic>Energy storage</topic><topic>Integer programming</topic><topic>intelligent control</topic><topic>Linear programming</topic><topic>Load modeling</topic><topic>Measurement</topic><topic>Microgrids</topic><topic>Mixed integer</topic><topic>mixed-integer linear program (MILP)</topic><topic>Natural disasters</topic><topic>Outages</topic><topic>Reactive power</topic><topic>Reliability engineering</topic><topic>Resilience</topic><topic>resiliency</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohan, G N V</creatorcontrib><creatorcontrib>Bhende, Chandrashekhar N.</creatorcontrib><creatorcontrib>Srivastava, Anurag K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mohan, G N V</au><au>Bhende, Chandrashekhar N.</au><au>Srivastava, Anurag K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Control of Battery Storage for Resiliency Enhancement of Distribution System</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Natural disasters and accidents have underscored the need for operative solutions that can enhance the resiliency of power distribution network (PDN). This article proposes novel methods of scheduling of battery energy storage system (BESS) and loads of microgrid to enhance the resiliency of PDN. A mixed-integer linear programming model is developed to minimize the energy mismatch between available resources and critical loads during outage period. The proposed model is aimed at minimizing the shedding of high critical loads (hcl) and maximizing the serving time of hcl during outages. In order to increase the longevity of the load serving, the fuzzy-based approach is developed to control the C_rate of the BESS. Moreover, to increase the resiliency of hcl, partitioning of BESS capacity is proposed, which provides more flexibility for charging/discharging control of the BESS. The concept of variable dispatch interval is introduced to reduce the frequent switching of loads. By considering the reactive power, an apparent power resiliency metric is proposed to quantify the resiliency of PDN. The IEEE 33-bus network is tested under various restoration periods in order to verify the performance of the proposed methodology in the MATLAB environment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2021.3083757</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3518-8018</orcidid><orcidid>https://orcid.org/0000-0003-2930-2582</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2022-06, Vol.16 (2), p.1-11
issn 1932-8184
1937-9234
language eng
recordid cdi_crossref_primary_10_1109_JSYST_2021_3083757
source IEEE Electronic Library (IEL)
subjects Apparent power resiliency metric
Batteries
Distributed generation
Electric power distribution
Electrical loads
Energy storage
Integer programming
intelligent control
Linear programming
Load modeling
Measurement
Microgrids
Mixed integer
mixed-integer linear program (MILP)
Natural disasters
Outages
Reactive power
Reliability engineering
Resilience
resiliency
Switches
title Intelligent Control of Battery Storage for Resiliency Enhancement of Distribution System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Control%20of%20Battery%20Storage%20for%20Resiliency%20Enhancement%20of%20Distribution%20System&rft.jtitle=IEEE%20systems%20journal&rft.au=Mohan,%20G%20N%20V&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2021.3083757&rft_dat=%3Cproquest_RIE%3E2676778821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676778821&rft_id=info:pmid/&rft_ieee_id=9455050&rfr_iscdi=true