Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs
In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, thi...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2022-06, Vol.16 (2), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE systems journal |
container_volume | 16 |
creator | Xiong, Youzhi Sun, Sanshan Qin, Lang Wei, Ning Liu, Li Zhang, Zhongpei |
description | In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation. |
doi_str_mv | 10.1109/JSYST.2021.3069753 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2021_3069753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415532</ieee_id><sourcerecordid>2676780922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</originalsourceid><addsrcrecordid>eNo9UE1Lw0AUDKJgrf4BvSx4Tt3dZDe7xxKtVloqtiqewmvyQrekSd1NhP57tx94mvdgZpiZILhldMAY1Q-v8-_5YsApZ4OISp2I6CzoMR0loeZRfH64eaiYii-DK-fWlAolEt0Ltm9oy8ZuoM6RDGuods440tQkxaoKRxaRTME58-txPJ2RL9OuSApbyE27C9Omdq0FU2NBRrap2xV0lSNQF-QTrIFlheE7uqbqWuM9h4-puw4uSqgc3pywH3yMnhbpSziZPY_T4STMuRatj1pIDnGsGQWhtJBCi7JAVUIuI1_Jt4QYc4g0jQFAlqBgqdF_slClklE_uD_6bm3z06Frs3XTWV_QZVwmMlFUc-5Z_MjKbeOcxTLbWrMBu8sYzfbLZodls_2y2WlZL7o7igwi_gt0zITw0f4Au8p1QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676780922</pqid></control><display><type>article</type><title>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</title><source>IEEE Electronic Library (IEL)</source><creator>Xiong, Youzhi ; Sun, Sanshan ; Qin, Lang ; Wei, Ning ; Liu, Li ; Zhang, Zhongpei</creator><creatorcontrib>Xiong, Youzhi ; Sun, Sanshan ; Qin, Lang ; Wei, Ning ; Liu, Li ; Zhang, Zhongpei</creatorcontrib><description>In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2021.3069753</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital converters ; Cell-free massive multiple-input and multiple-output (MIMO) ; Central processing units ; channel correlation ; Constraints ; Correlation ; CPUs ; Downlink ; Fading ; Fading channels ; limited-capacity fronthaul ; linear minimum mean-square (LMMSE) ; Massive MIMO ; Measurement ; MIMO communication ; Quantization (signal) ; Training ; Uplink ; variable-resolution quantization</subject><ispartof>IEEE systems journal, 2022-06, Vol.16 (2), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</citedby><cites>FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</cites><orcidid>0000-0001-7126-0967 ; 0000-0002-5344-8373 ; 0000-0003-2772-9937 ; 0000-0002-3936-7526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9415532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Qin, Lang</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><title>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation.</description><subject>Analog to digital converters</subject><subject>Cell-free massive multiple-input and multiple-output (MIMO)</subject><subject>Central processing units</subject><subject>channel correlation</subject><subject>Constraints</subject><subject>Correlation</subject><subject>CPUs</subject><subject>Downlink</subject><subject>Fading</subject><subject>Fading channels</subject><subject>limited-capacity fronthaul</subject><subject>linear minimum mean-square (LMMSE)</subject><subject>Massive MIMO</subject><subject>Measurement</subject><subject>MIMO communication</subject><subject>Quantization (signal)</subject><subject>Training</subject><subject>Uplink</subject><subject>variable-resolution quantization</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1Lw0AUDKJgrf4BvSx4Tt3dZDe7xxKtVloqtiqewmvyQrekSd1NhP57tx94mvdgZpiZILhldMAY1Q-v8-_5YsApZ4OISp2I6CzoMR0loeZRfH64eaiYii-DK-fWlAolEt0Ltm9oy8ZuoM6RDGuods440tQkxaoKRxaRTME58-txPJ2RL9OuSApbyE27C9Omdq0FU2NBRrap2xV0lSNQF-QTrIFlheE7uqbqWuM9h4-puw4uSqgc3pywH3yMnhbpSziZPY_T4STMuRatj1pIDnGsGQWhtJBCi7JAVUIuI1_Jt4QYc4g0jQFAlqBgqdF_slClklE_uD_6bm3z06Frs3XTWV_QZVwmMlFUc-5Z_MjKbeOcxTLbWrMBu8sYzfbLZodls_2y2WlZL7o7igwi_gt0zITw0f4Au8p1QA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Xiong, Youzhi</creator><creator>Sun, Sanshan</creator><creator>Qin, Lang</creator><creator>Wei, Ning</creator><creator>Liu, Li</creator><creator>Zhang, Zhongpei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid></search><sort><creationdate>20220601</creationdate><title>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</title><author>Xiong, Youzhi ; Sun, Sanshan ; Qin, Lang ; Wei, Ning ; Liu, Li ; Zhang, Zhongpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analog to digital converters</topic><topic>Cell-free massive multiple-input and multiple-output (MIMO)</topic><topic>Central processing units</topic><topic>channel correlation</topic><topic>Constraints</topic><topic>Correlation</topic><topic>CPUs</topic><topic>Downlink</topic><topic>Fading</topic><topic>Fading channels</topic><topic>limited-capacity fronthaul</topic><topic>linear minimum mean-square (LMMSE)</topic><topic>Massive MIMO</topic><topic>Measurement</topic><topic>MIMO communication</topic><topic>Quantization (signal)</topic><topic>Training</topic><topic>Uplink</topic><topic>variable-resolution quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Qin, Lang</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Youzhi</au><au>Sun, Sanshan</au><au>Qin, Lang</au><au>Wei, Ning</au><au>Liu, Li</au><au>Zhang, Zhongpei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2021.3069753</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2022-06, Vol.16 (2), p.1-12 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSYST_2021_3069753 |
source | IEEE Electronic Library (IEL) |
subjects | Analog to digital converters Cell-free massive multiple-input and multiple-output (MIMO) Central processing units channel correlation Constraints Correlation CPUs Downlink Fading Fading channels limited-capacity fronthaul linear minimum mean-square (LMMSE) Massive MIMO Measurement MIMO communication Quantization (signal) Training Uplink variable-resolution quantization |
title | Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20on%20Cell-Free%20Massive%20MIMO%20With%20Capacity-Constrained%20Fronthauls%20and%20Variable-Resolution%20ADCs&rft.jtitle=IEEE%20systems%20journal&rft.au=Xiong,%20Youzhi&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2021.3069753&rft_dat=%3Cproquest_RIE%3E2676780922%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676780922&rft_id=info:pmid/&rft_ieee_id=9415532&rfr_iscdi=true |