Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs

In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2022-06, Vol.16 (2), p.1-12
Hauptverfasser: Xiong, Youzhi, Sun, Sanshan, Qin, Lang, Wei, Ning, Liu, Li, Zhang, Zhongpei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2
container_start_page 1
container_title IEEE systems journal
container_volume 16
creator Xiong, Youzhi
Sun, Sanshan
Qin, Lang
Wei, Ning
Liu, Li
Zhang, Zhongpei
description In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation.
doi_str_mv 10.1109/JSYST.2021.3069753
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2021_3069753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9415532</ieee_id><sourcerecordid>2676780922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</originalsourceid><addsrcrecordid>eNo9UE1Lw0AUDKJgrf4BvSx4Tt3dZDe7xxKtVloqtiqewmvyQrekSd1NhP57tx94mvdgZpiZILhldMAY1Q-v8-_5YsApZ4OISp2I6CzoMR0loeZRfH64eaiYii-DK-fWlAolEt0Ltm9oy8ZuoM6RDGuods440tQkxaoKRxaRTME58-txPJ2RL9OuSApbyE27C9Omdq0FU2NBRrap2xV0lSNQF-QTrIFlheE7uqbqWuM9h4-puw4uSqgc3pywH3yMnhbpSziZPY_T4STMuRatj1pIDnGsGQWhtJBCi7JAVUIuI1_Jt4QYc4g0jQFAlqBgqdF_slClklE_uD_6bm3z06Frs3XTWV_QZVwmMlFUc-5Z_MjKbeOcxTLbWrMBu8sYzfbLZodls_2y2WlZL7o7igwi_gt0zITw0f4Au8p1QA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676780922</pqid></control><display><type>article</type><title>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</title><source>IEEE Electronic Library (IEL)</source><creator>Xiong, Youzhi ; Sun, Sanshan ; Qin, Lang ; Wei, Ning ; Liu, Li ; Zhang, Zhongpei</creator><creatorcontrib>Xiong, Youzhi ; Sun, Sanshan ; Qin, Lang ; Wei, Ning ; Liu, Li ; Zhang, Zhongpei</creatorcontrib><description>In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2021.3069753</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog to digital converters ; Cell-free massive multiple-input and multiple-output (MIMO) ; Central processing units ; channel correlation ; Constraints ; Correlation ; CPUs ; Downlink ; Fading ; Fading channels ; limited-capacity fronthaul ; linear minimum mean-square (LMMSE) ; Massive MIMO ; Measurement ; MIMO communication ; Quantization (signal) ; Training ; Uplink ; variable-resolution quantization</subject><ispartof>IEEE systems journal, 2022-06, Vol.16 (2), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</citedby><cites>FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</cites><orcidid>0000-0001-7126-0967 ; 0000-0002-5344-8373 ; 0000-0003-2772-9937 ; 0000-0002-3936-7526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9415532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9415532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Qin, Lang</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><title>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation.</description><subject>Analog to digital converters</subject><subject>Cell-free massive multiple-input and multiple-output (MIMO)</subject><subject>Central processing units</subject><subject>channel correlation</subject><subject>Constraints</subject><subject>Correlation</subject><subject>CPUs</subject><subject>Downlink</subject><subject>Fading</subject><subject>Fading channels</subject><subject>limited-capacity fronthaul</subject><subject>linear minimum mean-square (LMMSE)</subject><subject>Massive MIMO</subject><subject>Measurement</subject><subject>MIMO communication</subject><subject>Quantization (signal)</subject><subject>Training</subject><subject>Uplink</subject><subject>variable-resolution quantization</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1Lw0AUDKJgrf4BvSx4Tt3dZDe7xxKtVloqtiqewmvyQrekSd1NhP57tx94mvdgZpiZILhldMAY1Q-v8-_5YsApZ4OISp2I6CzoMR0loeZRfH64eaiYii-DK-fWlAolEt0Ltm9oy8ZuoM6RDGuods440tQkxaoKRxaRTME58-txPJ2RL9OuSApbyE27C9Omdq0FU2NBRrap2xV0lSNQF-QTrIFlheE7uqbqWuM9h4-puw4uSqgc3pywH3yMnhbpSziZPY_T4STMuRatj1pIDnGsGQWhtJBCi7JAVUIuI1_Jt4QYc4g0jQFAlqBgqdF_slClklE_uD_6bm3z06Frs3XTWV_QZVwmMlFUc-5Z_MjKbeOcxTLbWrMBu8sYzfbLZodls_2y2WlZL7o7igwi_gt0zITw0f4Au8p1QA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Xiong, Youzhi</creator><creator>Sun, Sanshan</creator><creator>Qin, Lang</creator><creator>Wei, Ning</creator><creator>Liu, Li</creator><creator>Zhang, Zhongpei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid></search><sort><creationdate>20220601</creationdate><title>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</title><author>Xiong, Youzhi ; Sun, Sanshan ; Qin, Lang ; Wei, Ning ; Liu, Li ; Zhang, Zhongpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-81d62a44910a58956595fde8fac63234306a4eca3904aaa6fa8ab9e9046d8f863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analog to digital converters</topic><topic>Cell-free massive multiple-input and multiple-output (MIMO)</topic><topic>Central processing units</topic><topic>channel correlation</topic><topic>Constraints</topic><topic>Correlation</topic><topic>CPUs</topic><topic>Downlink</topic><topic>Fading</topic><topic>Fading channels</topic><topic>limited-capacity fronthaul</topic><topic>linear minimum mean-square (LMMSE)</topic><topic>Massive MIMO</topic><topic>Measurement</topic><topic>MIMO communication</topic><topic>Quantization (signal)</topic><topic>Training</topic><topic>Uplink</topic><topic>variable-resolution quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Youzhi</creatorcontrib><creatorcontrib>Sun, Sanshan</creatorcontrib><creatorcontrib>Qin, Lang</creatorcontrib><creatorcontrib>Wei, Ning</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Zhang, Zhongpei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiong, Youzhi</au><au>Sun, Sanshan</au><au>Qin, Lang</au><au>Wei, Ning</au><au>Liu, Li</au><au>Zhang, Zhongpei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>In the recently proposed cell-free massive multiple-input and multiple-output (MIMO) networks, the capacity of fronthaul links connecting all access points (APs) and a central processing unit (CPU) is limited. In this context, taking into consideration the spatial channel correlation at the APs, this article investigates the performance of cell-free massive MIMO systems with variable-resolution quantization, i.e., each analog-to-digital converter at the APs and quantizer at the CPU use arbitrary bits for quantization. Specifically, we first introduce a technique based on linear minimum mean-square to perform channel estimation. On this basis, we then derive the closed-form expressions of achievable rates over spatially correlated Rayleigh fading channels for both uplink and downlink if maximal ratio combining and maximal ratio transmission are used at the CPU. Finally, simulation results validate our theoretical analyses and corroborate that the performance of channel estimation and achievable rates reduces as the spatial correlation strengthens. Moreover, from a statistic perspective, under the constraint of the total number of quantization bits, it is preferable to assign more bits to the AP with larger aggregated large-scale fading coefficient and lower channel correlation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2021.3069753</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7126-0967</orcidid><orcidid>https://orcid.org/0000-0002-5344-8373</orcidid><orcidid>https://orcid.org/0000-0003-2772-9937</orcidid><orcidid>https://orcid.org/0000-0002-3936-7526</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2022-06, Vol.16 (2), p.1-12
issn 1932-8184
1937-9234
language eng
recordid cdi_crossref_primary_10_1109_JSYST_2021_3069753
source IEEE Electronic Library (IEL)
subjects Analog to digital converters
Cell-free massive multiple-input and multiple-output (MIMO)
Central processing units
channel correlation
Constraints
Correlation
CPUs
Downlink
Fading
Fading channels
limited-capacity fronthaul
linear minimum mean-square (LMMSE)
Massive MIMO
Measurement
MIMO communication
Quantization (signal)
Training
Uplink
variable-resolution quantization
title Performance Analysis on Cell-Free Massive MIMO With Capacity-Constrained Fronthauls and Variable-Resolution ADCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Analysis%20on%20Cell-Free%20Massive%20MIMO%20With%20Capacity-Constrained%20Fronthauls%20and%20Variable-Resolution%20ADCs&rft.jtitle=IEEE%20systems%20journal&rft.au=Xiong,%20Youzhi&rft.date=2022-06-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2021.3069753&rft_dat=%3Cproquest_RIE%3E2676780922%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676780922&rft_id=info:pmid/&rft_ieee_id=9415532&rfr_iscdi=true