A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems

Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2020-09, Vol.14 (3), p.3117-3128
Hauptverfasser: Chen, Xuan, Cheng, Long, Liu, Cong, Liu, Qingzhi, Liu, Jinwei, Mao, Ying, Murphy, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3128
container_issue 3
container_start_page 3117
container_title IEEE systems journal
container_volume 14
creator Chen, Xuan
Cheng, Long
Liu, Cong
Liu, Qingzhi
Liu, Jinwei
Mao, Ying
Murphy, John
description Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks.
doi_str_mv 10.1109/JSYST.2019.2960088
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2019_2960088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8961103</ieee_id><sourcerecordid>2439704410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjp3EXoaIpyoFKUWIlTWNberSPIiTRfl60odYzdVozszoIHRNyYxSIu9ei89iMQsJlbNQxoQIcYImVLIkkCHjp_scBoIKfo4uvF8TEokokRP0luKPPA3uwRuN87Z3lfuF3jU1Ttu2a6BcYdt0eAH-Gxflyuhh4-ov7GqcbZpB46yp2qHftYqt703lL9GZhY03V8c6Re-PD4vsOZjnTy9ZOg9KJkQfAHCtjaBSR4wtRRKz2C6hjJMxUk0oj7WVdmkEcIglWEYJhwg4BVMKqQWbotvD3vHLn8H4Xq2boavHkyrkTCaEc0rGqfAwVXaN952xqu1cBd1WUaJ25tTenNqZU0dzI3RzgJwx5h8QMh4Bxv4At6RqKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439704410</pqid></control><display><type>article</type><title>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xuan ; Cheng, Long ; Liu, Cong ; Liu, Qingzhi ; Liu, Jinwei ; Mao, Ying ; Murphy, John</creator><creatorcontrib>Chen, Xuan ; Cheng, Long ; Liu, Cong ; Liu, Qingzhi ; Liu, Jinwei ; Mao, Ying ; Murphy, John</creatorcontrib><description>Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2019.2960088</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cloud computing ; Computational modeling ; Computer simulation ; Heuristic methods ; Job shop scheduling ; metaheuristics ; multiobjective optimization ; Multiple objective analysis ; Optimization ; Processor scheduling ; Resource utilization ; Scheduling ; Task analysis ; Task scheduling ; whale optimization algorithm</subject><ispartof>IEEE systems journal, 2020-09, Vol.14 (3), p.3117-3128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</citedby><cites>FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</cites><orcidid>0000-0002-5999-2126 ; 0000-0001-7822-1573 ; 0000-0001-6472-5228 ; 0000-0003-1638-059X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8961103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8961103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Murphy, John</creatorcontrib><title>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Heuristic methods</subject><subject>Job shop scheduling</subject><subject>metaheuristics</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Processor scheduling</subject><subject>Resource utilization</subject><subject>Scheduling</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>whale optimization algorithm</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjp3EXoaIpyoFKUWIlTWNberSPIiTRfl60odYzdVozszoIHRNyYxSIu9ei89iMQsJlbNQxoQIcYImVLIkkCHjp_scBoIKfo4uvF8TEokokRP0luKPPA3uwRuN87Z3lfuF3jU1Ttu2a6BcYdt0eAH-Gxflyuhh4-ov7GqcbZpB46yp2qHftYqt703lL9GZhY03V8c6Re-PD4vsOZjnTy9ZOg9KJkQfAHCtjaBSR4wtRRKz2C6hjJMxUk0oj7WVdmkEcIglWEYJhwg4BVMKqQWbotvD3vHLn8H4Xq2boavHkyrkTCaEc0rGqfAwVXaN952xqu1cBd1WUaJ25tTenNqZU0dzI3RzgJwx5h8QMh4Bxv4At6RqKw</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Chen, Xuan</creator><creator>Cheng, Long</creator><creator>Liu, Cong</creator><creator>Liu, Qingzhi</creator><creator>Liu, Jinwei</creator><creator>Mao, Ying</creator><creator>Murphy, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-7822-1573</orcidid><orcidid>https://orcid.org/0000-0001-6472-5228</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid></search><sort><creationdate>202009</creationdate><title>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</title><author>Chen, Xuan ; Cheng, Long ; Liu, Cong ; Liu, Qingzhi ; Liu, Jinwei ; Mao, Ying ; Murphy, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Heuristic methods</topic><topic>Job shop scheduling</topic><topic>metaheuristics</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Processor scheduling</topic><topic>Resource utilization</topic><topic>Scheduling</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>whale optimization algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Murphy, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xuan</au><au>Cheng, Long</au><au>Liu, Cong</au><au>Liu, Qingzhi</au><au>Liu, Jinwei</au><au>Mao, Ying</au><au>Murphy, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2020-09</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>3117</spage><epage>3128</epage><pages>3117-3128</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2019.2960088</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-7822-1573</orcidid><orcidid>https://orcid.org/0000-0001-6472-5228</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2020-09, Vol.14 (3), p.3117-3128
issn 1932-8184
1937-9234
language eng
recordid cdi_crossref_primary_10_1109_JSYST_2019_2960088
source IEEE Electronic Library (IEL)
subjects Algorithms
Cloud computing
Computational modeling
Computer simulation
Heuristic methods
Job shop scheduling
metaheuristics
multiobjective optimization
Multiple objective analysis
Optimization
Processor scheduling
Resource utilization
Scheduling
Task analysis
Task scheduling
whale optimization algorithm
title A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20WOA-Based%20Optimization%20Approach%20for%20Task%20Scheduling%20in%20Cloud%20Computing%20Systems&rft.jtitle=IEEE%20systems%20journal&rft.au=Chen,%20Xuan&rft.date=2020-09&rft.volume=14&rft.issue=3&rft.spage=3117&rft.epage=3128&rft.pages=3117-3128&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2019.2960088&rft_dat=%3Cproquest_RIE%3E2439704410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439704410&rft_id=info:pmid/&rft_ieee_id=8961103&rfr_iscdi=true