A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems
Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2020-09, Vol.14 (3), p.3117-3128 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3128 |
---|---|
container_issue | 3 |
container_start_page | 3117 |
container_title | IEEE systems journal |
container_volume | 14 |
creator | Chen, Xuan Cheng, Long Liu, Cong Liu, Qingzhi Liu, Jinwei Mao, Ying Murphy, John |
description | Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks. |
doi_str_mv | 10.1109/JSYST.2019.2960088 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2019_2960088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8961103</ieee_id><sourcerecordid>2439704410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjp3EXoaIpyoFKUWIlTWNberSPIiTRfl60odYzdVozszoIHRNyYxSIu9ei89iMQsJlbNQxoQIcYImVLIkkCHjp_scBoIKfo4uvF8TEokokRP0luKPPA3uwRuN87Z3lfuF3jU1Ttu2a6BcYdt0eAH-Gxflyuhh4-ov7GqcbZpB46yp2qHftYqt703lL9GZhY03V8c6Re-PD4vsOZjnTy9ZOg9KJkQfAHCtjaBSR4wtRRKz2C6hjJMxUk0oj7WVdmkEcIglWEYJhwg4BVMKqQWbotvD3vHLn8H4Xq2boavHkyrkTCaEc0rGqfAwVXaN952xqu1cBd1WUaJ25tTenNqZU0dzI3RzgJwx5h8QMh4Bxv4At6RqKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2439704410</pqid></control><display><type>article</type><title>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xuan ; Cheng, Long ; Liu, Cong ; Liu, Qingzhi ; Liu, Jinwei ; Mao, Ying ; Murphy, John</creator><creatorcontrib>Chen, Xuan ; Cheng, Long ; Liu, Cong ; Liu, Qingzhi ; Liu, Jinwei ; Mao, Ying ; Murphy, John</creatorcontrib><description>Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2019.2960088</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cloud computing ; Computational modeling ; Computer simulation ; Heuristic methods ; Job shop scheduling ; metaheuristics ; multiobjective optimization ; Multiple objective analysis ; Optimization ; Processor scheduling ; Resource utilization ; Scheduling ; Task analysis ; Task scheduling ; whale optimization algorithm</subject><ispartof>IEEE systems journal, 2020-09, Vol.14 (3), p.3117-3128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</citedby><cites>FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</cites><orcidid>0000-0002-5999-2126 ; 0000-0001-7822-1573 ; 0000-0001-6472-5228 ; 0000-0003-1638-059X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8961103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8961103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Murphy, John</creatorcontrib><title>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Heuristic methods</subject><subject>Job shop scheduling</subject><subject>metaheuristics</subject><subject>multiobjective optimization</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Processor scheduling</subject><subject>Resource utilization</subject><subject>Scheduling</subject><subject>Task analysis</subject><subject>Task scheduling</subject><subject>whale optimization algorithm</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CxxDrFjp3EXoaIpyoFKUWIlTWNberSPIiTRfl60odYzdVozszoIHRNyYxSIu9ei89iMQsJlbNQxoQIcYImVLIkkCHjp_scBoIKfo4uvF8TEokokRP0luKPPA3uwRuN87Z3lfuF3jU1Ttu2a6BcYdt0eAH-Gxflyuhh4-ov7GqcbZpB46yp2qHftYqt703lL9GZhY03V8c6Re-PD4vsOZjnTy9ZOg9KJkQfAHCtjaBSR4wtRRKz2C6hjJMxUk0oj7WVdmkEcIglWEYJhwg4BVMKqQWbotvD3vHLn8H4Xq2boavHkyrkTCaEc0rGqfAwVXaN952xqu1cBd1WUaJ25tTenNqZU0dzI3RzgJwx5h8QMh4Bxv4At6RqKw</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Chen, Xuan</creator><creator>Cheng, Long</creator><creator>Liu, Cong</creator><creator>Liu, Qingzhi</creator><creator>Liu, Jinwei</creator><creator>Mao, Ying</creator><creator>Murphy, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-7822-1573</orcidid><orcidid>https://orcid.org/0000-0001-6472-5228</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid></search><sort><creationdate>202009</creationdate><title>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</title><author>Chen, Xuan ; Cheng, Long ; Liu, Cong ; Liu, Qingzhi ; Liu, Jinwei ; Mao, Ying ; Murphy, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-aa4dde819d533b87636fbac678761d0146df9fbe8a4a69af3104a5a41aec89d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Heuristic methods</topic><topic>Job shop scheduling</topic><topic>metaheuristics</topic><topic>multiobjective optimization</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Processor scheduling</topic><topic>Resource utilization</topic><topic>Scheduling</topic><topic>Task analysis</topic><topic>Task scheduling</topic><topic>whale optimization algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Liu, Qingzhi</creatorcontrib><creatorcontrib>Liu, Jinwei</creatorcontrib><creatorcontrib>Mao, Ying</creatorcontrib><creatorcontrib>Murphy, John</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xuan</au><au>Cheng, Long</au><au>Liu, Cong</au><au>Liu, Qingzhi</au><au>Liu, Jinwei</au><au>Mao, Ying</au><au>Murphy, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2020-09</date><risdate>2020</risdate><volume>14</volume><issue>3</issue><spage>3117</spage><epage>3128</epage><pages>3117-3128</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this article, for the first time, we apply the latest metaheuristics whale optimization algorithm (WOA) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called I mproved W OA for C loud task scheduling (IWC) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2019.2960088</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5999-2126</orcidid><orcidid>https://orcid.org/0000-0001-7822-1573</orcidid><orcidid>https://orcid.org/0000-0001-6472-5228</orcidid><orcidid>https://orcid.org/0000-0003-1638-059X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2020-09, Vol.14 (3), p.3117-3128 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSYST_2019_2960088 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Cloud computing Computational modeling Computer simulation Heuristic methods Job shop scheduling metaheuristics multiobjective optimization Multiple objective analysis Optimization Processor scheduling Resource utilization Scheduling Task analysis Task scheduling whale optimization algorithm |
title | A WOA-Based Optimization Approach for Task Scheduling in Cloud Computing Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20WOA-Based%20Optimization%20Approach%20for%20Task%20Scheduling%20in%20Cloud%20Computing%20Systems&rft.jtitle=IEEE%20systems%20journal&rft.au=Chen,%20Xuan&rft.date=2020-09&rft.volume=14&rft.issue=3&rft.spage=3117&rft.epage=3128&rft.pages=3117-3128&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2019.2960088&rft_dat=%3Cproquest_RIE%3E2439704410%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2439704410&rft_id=info:pmid/&rft_ieee_id=8961103&rfr_iscdi=true |