Semidynamic Cell-Clustering Algorithm Based on Reinforcement Learning in Cooperative Transmission System
In this paper, we propose a novel method of managing a semidynamic cluster through the use of a reinforcement learning. We derive some concepts from reinforcement learning that could be suitable for cooperative networks. We also verify the performance of proposed algorithm by means of a simulation,...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2018-12, Vol.12 (4), p.3853-3856 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3856 |
---|---|
container_issue | 4 |
container_start_page | 3853 |
container_title | IEEE systems journal |
container_volume | 12 |
creator | Chung, Byung Chang Cho, Dong-Ho |
description | In this paper, we propose a novel method of managing a semidynamic cluster through the use of a reinforcement learning. We derive some concepts from reinforcement learning that could be suitable for cooperative networks. We also verify the performance of proposed algorithm by means of a simulation, in which we examined spectral efficiency and convergence properties. The proposed algorithm represents a considerable improvement for edge users in particular. In addition, we analyze the complexity of the clustering schemes. Our proposed algorithm is effective in the environment where there is a limited computational resource. |
doi_str_mv | 10.1109/JSYST.2017.2769679 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSYST_2017_2769679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8169007</ieee_id><sourcerecordid>2137561018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3f79f0bb9cf1de9ebea664c299fcc34ec42b02564656f54ebafd34104b13c1fd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKd_QG8CXncmaZo0l7P4yUCw88KrkmYnW0abzKQT9u_tPvDqvHDe5xx4kuSW4AkhWD68V9_VfEIxERMquORCniUjIjORSpqx80OmaUEKdplcxbjGOC9yIUfJqoLOLnZOdVajEto2Ldtt7CFYt0TTdumD7VcdelQRFsg79AnWGR80dOB6NAMV3L5pHSq930BQvf0FNA_Kxc7GaAek2g33uuvkwqg2ws1pjpOv56d5-ZrOPl7eyuks1VTmfZoZIQ1uGqkNWYCEBhTnbNhJo3XGQDPaYJpzxnNucgaNMouMEcwakmky5HFyf7y7Cf5nC7Gv134b3PCypiQTOSeYFEOLHls6-BgDmHoTbKfCria43hutD0brvdH6ZHSA7o6QBYB_oCBcYiyyP-UYdPE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137561018</pqid></control><display><type>article</type><title>Semidynamic Cell-Clustering Algorithm Based on Reinforcement Learning in Cooperative Transmission System</title><source>IEEE Electronic Library (IEL)</source><creator>Chung, Byung Chang ; Cho, Dong-Ho</creator><creatorcontrib>Chung, Byung Chang ; Cho, Dong-Ho</creatorcontrib><description>In this paper, we propose a novel method of managing a semidynamic cluster through the use of a reinforcement learning. We derive some concepts from reinforcement learning that could be suitable for cooperative networks. We also verify the performance of proposed algorithm by means of a simulation, in which we examined spectral efficiency and convergence properties. The proposed algorithm represents a considerable improvement for edge users in particular. In addition, we analyze the complexity of the clustering schemes. Our proposed algorithm is effective in the environment where there is a limited computational resource.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2017.2769679</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Array signal processing ; Cell clustering ; Clustering ; Clustering algorithms ; Computer simulation ; cooperative networks ; Heuristic algorithms ; Interference ; Learning (artificial intelligence) ; Machine learning ; partial cooperative multipoint transmission (partial CoMP) ; reinforcement learning ; Signal to noise ratio ; small cells (SC)</subject><ispartof>IEEE systems journal, 2018-12, Vol.12 (4), p.3853-3856</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3f79f0bb9cf1de9ebea664c299fcc34ec42b02564656f54ebafd34104b13c1fd3</citedby><cites>FETCH-LOGICAL-c295t-3f79f0bb9cf1de9ebea664c299fcc34ec42b02564656f54ebafd34104b13c1fd3</cites><orcidid>0000-0001-9849-4392 ; 0000-0002-5543-6157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8169007$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8169007$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chung, Byung Chang</creatorcontrib><creatorcontrib>Cho, Dong-Ho</creatorcontrib><title>Semidynamic Cell-Clustering Algorithm Based on Reinforcement Learning in Cooperative Transmission System</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>In this paper, we propose a novel method of managing a semidynamic cluster through the use of a reinforcement learning. We derive some concepts from reinforcement learning that could be suitable for cooperative networks. We also verify the performance of proposed algorithm by means of a simulation, in which we examined spectral efficiency and convergence properties. The proposed algorithm represents a considerable improvement for edge users in particular. In addition, we analyze the complexity of the clustering schemes. Our proposed algorithm is effective in the environment where there is a limited computational resource.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Array signal processing</subject><subject>Cell clustering</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computer simulation</subject><subject>cooperative networks</subject><subject>Heuristic algorithms</subject><subject>Interference</subject><subject>Learning (artificial intelligence)</subject><subject>Machine learning</subject><subject>partial cooperative multipoint transmission (partial CoMP)</subject><subject>reinforcement learning</subject><subject>Signal to noise ratio</subject><subject>small cells (SC)</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKd_QG8CXncmaZo0l7P4yUCw88KrkmYnW0abzKQT9u_tPvDqvHDe5xx4kuSW4AkhWD68V9_VfEIxERMquORCniUjIjORSpqx80OmaUEKdplcxbjGOC9yIUfJqoLOLnZOdVajEto2Ldtt7CFYt0TTdumD7VcdelQRFsg79AnWGR80dOB6NAMV3L5pHSq930BQvf0FNA_Kxc7GaAek2g33uuvkwqg2ws1pjpOv56d5-ZrOPl7eyuks1VTmfZoZIQ1uGqkNWYCEBhTnbNhJo3XGQDPaYJpzxnNucgaNMouMEcwakmky5HFyf7y7Cf5nC7Gv134b3PCypiQTOSeYFEOLHls6-BgDmHoTbKfCria43hutD0brvdH6ZHSA7o6QBYB_oCBcYiyyP-UYdPE</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Chung, Byung Chang</creator><creator>Cho, Dong-Ho</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9849-4392</orcidid><orcidid>https://orcid.org/0000-0002-5543-6157</orcidid></search><sort><creationdate>201812</creationdate><title>Semidynamic Cell-Clustering Algorithm Based on Reinforcement Learning in Cooperative Transmission System</title><author>Chung, Byung Chang ; Cho, Dong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3f79f0bb9cf1de9ebea664c299fcc34ec42b02564656f54ebafd34104b13c1fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Array signal processing</topic><topic>Cell clustering</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computer simulation</topic><topic>cooperative networks</topic><topic>Heuristic algorithms</topic><topic>Interference</topic><topic>Learning (artificial intelligence)</topic><topic>Machine learning</topic><topic>partial cooperative multipoint transmission (partial CoMP)</topic><topic>reinforcement learning</topic><topic>Signal to noise ratio</topic><topic>small cells (SC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Byung Chang</creatorcontrib><creatorcontrib>Cho, Dong-Ho</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chung, Byung Chang</au><au>Cho, Dong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semidynamic Cell-Clustering Algorithm Based on Reinforcement Learning in Cooperative Transmission System</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2018-12</date><risdate>2018</risdate><volume>12</volume><issue>4</issue><spage>3853</spage><epage>3856</epage><pages>3853-3856</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>In this paper, we propose a novel method of managing a semidynamic cluster through the use of a reinforcement learning. We derive some concepts from reinforcement learning that could be suitable for cooperative networks. We also verify the performance of proposed algorithm by means of a simulation, in which we examined spectral efficiency and convergence properties. The proposed algorithm represents a considerable improvement for edge users in particular. In addition, we analyze the complexity of the clustering schemes. Our proposed algorithm is effective in the environment where there is a limited computational resource.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2017.2769679</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9849-4392</orcidid><orcidid>https://orcid.org/0000-0002-5543-6157</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2018-12, Vol.12 (4), p.3853-3856 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSYST_2017_2769679 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Array signal processing Cell clustering Clustering Clustering algorithms Computer simulation cooperative networks Heuristic algorithms Interference Learning (artificial intelligence) Machine learning partial cooperative multipoint transmission (partial CoMP) reinforcement learning Signal to noise ratio small cells (SC) |
title | Semidynamic Cell-Clustering Algorithm Based on Reinforcement Learning in Cooperative Transmission System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A25%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semidynamic%20Cell-Clustering%20Algorithm%20Based%20on%20Reinforcement%20Learning%20in%20Cooperative%20Transmission%20System&rft.jtitle=IEEE%20systems%20journal&rft.au=Chung,%20Byung%20Chang&rft.date=2018-12&rft.volume=12&rft.issue=4&rft.spage=3853&rft.epage=3856&rft.pages=3853-3856&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2017.2769679&rft_dat=%3Cproquest_RIE%3E2137561018%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137561018&rft_id=info:pmid/&rft_ieee_id=8169007&rfr_iscdi=true |