Existence and Uniqueness of Hyperhelical Array Manifold Curves

A number of significant problems, arising frequently in array signal processing, have been successfully tackled using methods based on the concept of the array manifold. These approaches take advantage of the inherent information about the array system which is encapsulated in the geometry of the ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2013-08, Vol.7 (4), p.625-633
Hauptverfasser: Efstathopoulos, Georgios, Manikas, Athanassios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 633
container_issue 4
container_start_page 625
container_title IEEE journal of selected topics in signal processing
container_volume 7
creator Efstathopoulos, Georgios
Manikas, Athanassios
description A number of significant problems, arising frequently in array signal processing, have been successfully tackled using methods based on the concept of the array manifold. These approaches take advantage of the inherent information about the array system which is encapsulated in the geometry of the array manifold. Array ambiguities, array uncertainties, array design and performance characterization are just some of the areas that have benefited from this approach. However, the investigation of the geometry of the array manifold itself for most array geometries has been proven to be a complex problem, especially when higher order geometric properties need to be calculated. Nevertheless, special array geometries have been identified, for which the array manifold curve assumes a specific "hyperhelical" shape. This property of the array manifold greatly simplifies its geometric analysis and, consequently, the analysis of the associated array geometries. Hence, the goal of this paper is twofold; to provide the necessary and sufficient conditions for the existence of array manifold curves of hyperhelical shape; and to determine which array geometries can actually give rise to manifold curves of this shape.
doi_str_mv 10.1109/JSTSP.2013.2257678
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTSP_2013_2257678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6497479</ieee_id><sourcerecordid>10_1109_JSTSP_2013_2257678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-8575a2d9364b33931b148b8dac8a1fa62db60a8237192cd50f1b5e485e958003</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwA7DxD6T4-pHYG6QqKhRUBFLD2nKcGxEUkmK3iPw9Da1YzSzmzOIQcg1sBsDM7dO6WL_OOAMx41xlaaZPyASMhIRJLU_HLngilRLn5CLGD8b2I5ATcrf4aeIWO4_UdRV965qvHXYYI-1ruhw2GN6xbbxr6TwEN9Bn1zV131Y034VvjJfkrHZtxKtjTklxvyjyZbJ6eXjM56vEC4BtolWmHK-MSGUphBFQgtSlrpzXDmqX8qpMmdNcZGC4rxSroVQotUKjNGNiSvjh1oc-xoC13YTm04XBArOjAPsnwI4C7FHAHro5QA0i_gOpNJnMjPgFu1ZW6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence and Uniqueness of Hyperhelical Array Manifold Curves</title><source>IEEE Electronic Library (IEL)</source><creator>Efstathopoulos, Georgios ; Manikas, Athanassios</creator><creatorcontrib>Efstathopoulos, Georgios ; Manikas, Athanassios</creatorcontrib><description>A number of significant problems, arising frequently in array signal processing, have been successfully tackled using methods based on the concept of the array manifold. These approaches take advantage of the inherent information about the array system which is encapsulated in the geometry of the array manifold. Array ambiguities, array uncertainties, array design and performance characterization are just some of the areas that have benefited from this approach. However, the investigation of the geometry of the array manifold itself for most array geometries has been proven to be a complex problem, especially when higher order geometric properties need to be calculated. Nevertheless, special array geometries have been identified, for which the array manifold curve assumes a specific "hyperhelical" shape. This property of the array manifold greatly simplifies its geometric analysis and, consequently, the analysis of the associated array geometries. Hence, the goal of this paper is twofold; to provide the necessary and sufficient conditions for the existence of array manifold curves of hyperhelical shape; and to determine which array geometries can actually give rise to manifold curves of this shape.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2013.2257678</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>IEEE</publisher><subject>Array design ; array manifolds ; array processing ; differential geometry ; Geometry ; hyperhelices ; Manifolds ; Sensor arrays ; Shape ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2013-08, Vol.7 (4), p.625-633</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-8575a2d9364b33931b148b8dac8a1fa62db60a8237192cd50f1b5e485e958003</citedby><cites>FETCH-LOGICAL-c311t-8575a2d9364b33931b148b8dac8a1fa62db60a8237192cd50f1b5e485e958003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6497479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6497479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Efstathopoulos, Georgios</creatorcontrib><creatorcontrib>Manikas, Athanassios</creatorcontrib><title>Existence and Uniqueness of Hyperhelical Array Manifold Curves</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>A number of significant problems, arising frequently in array signal processing, have been successfully tackled using methods based on the concept of the array manifold. These approaches take advantage of the inherent information about the array system which is encapsulated in the geometry of the array manifold. Array ambiguities, array uncertainties, array design and performance characterization are just some of the areas that have benefited from this approach. However, the investigation of the geometry of the array manifold itself for most array geometries has been proven to be a complex problem, especially when higher order geometric properties need to be calculated. Nevertheless, special array geometries have been identified, for which the array manifold curve assumes a specific "hyperhelical" shape. This property of the array manifold greatly simplifies its geometric analysis and, consequently, the analysis of the associated array geometries. Hence, the goal of this paper is twofold; to provide the necessary and sufficient conditions for the existence of array manifold curves of hyperhelical shape; and to determine which array geometries can actually give rise to manifold curves of this shape.</description><subject>Array design</subject><subject>array manifolds</subject><subject>array processing</subject><subject>differential geometry</subject><subject>Geometry</subject><subject>hyperhelices</subject><subject>Manifolds</subject><subject>Sensor arrays</subject><subject>Shape</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURC0EEqXwA7DxD6T4-pHYG6QqKhRUBFLD2nKcGxEUkmK3iPw9Da1YzSzmzOIQcg1sBsDM7dO6WL_OOAMx41xlaaZPyASMhIRJLU_HLngilRLn5CLGD8b2I5ATcrf4aeIWO4_UdRV965qvHXYYI-1ruhw2GN6xbbxr6TwEN9Bn1zV131Y034VvjJfkrHZtxKtjTklxvyjyZbJ6eXjM56vEC4BtolWmHK-MSGUphBFQgtSlrpzXDmqX8qpMmdNcZGC4rxSroVQotUKjNGNiSvjh1oc-xoC13YTm04XBArOjAPsnwI4C7FHAHro5QA0i_gOpNJnMjPgFu1ZW6g</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Efstathopoulos, Georgios</creator><creator>Manikas, Athanassios</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130801</creationdate><title>Existence and Uniqueness of Hyperhelical Array Manifold Curves</title><author>Efstathopoulos, Georgios ; Manikas, Athanassios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-8575a2d9364b33931b148b8dac8a1fa62db60a8237192cd50f1b5e485e958003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Array design</topic><topic>array manifolds</topic><topic>array processing</topic><topic>differential geometry</topic><topic>Geometry</topic><topic>hyperhelices</topic><topic>Manifolds</topic><topic>Sensor arrays</topic><topic>Shape</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efstathopoulos, Georgios</creatorcontrib><creatorcontrib>Manikas, Athanassios</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Efstathopoulos, Georgios</au><au>Manikas, Athanassios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Uniqueness of Hyperhelical Array Manifold Curves</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>625</spage><epage>633</epage><pages>625-633</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>A number of significant problems, arising frequently in array signal processing, have been successfully tackled using methods based on the concept of the array manifold. These approaches take advantage of the inherent information about the array system which is encapsulated in the geometry of the array manifold. Array ambiguities, array uncertainties, array design and performance characterization are just some of the areas that have benefited from this approach. However, the investigation of the geometry of the array manifold itself for most array geometries has been proven to be a complex problem, especially when higher order geometric properties need to be calculated. Nevertheless, special array geometries have been identified, for which the array manifold curve assumes a specific "hyperhelical" shape. This property of the array manifold greatly simplifies its geometric analysis and, consequently, the analysis of the associated array geometries. Hence, the goal of this paper is twofold; to provide the necessary and sufficient conditions for the existence of array manifold curves of hyperhelical shape; and to determine which array geometries can actually give rise to manifold curves of this shape.</abstract><pub>IEEE</pub><doi>10.1109/JSTSP.2013.2257678</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2013-08, Vol.7 (4), p.625-633
issn 1932-4553
1941-0484
language eng
recordid cdi_crossref_primary_10_1109_JSTSP_2013_2257678
source IEEE Electronic Library (IEL)
subjects Array design
array manifolds
array processing
differential geometry
Geometry
hyperhelices
Manifolds
Sensor arrays
Shape
Vectors
title Existence and Uniqueness of Hyperhelical Array Manifold Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Uniqueness%20of%20Hyperhelical%20Array%20Manifold%20Curves&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Efstathopoulos,%20Georgios&rft.date=2013-08-01&rft.volume=7&rft.issue=4&rft.spage=625&rft.epage=633&rft.pages=625-633&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2013.2257678&rft_dat=%3Ccrossref_RIE%3E10_1109_JSTSP_2013_2257678%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6497479&rfr_iscdi=true