Distributed Pareto Optimization via Diffusion Strategies

We consider solving multi-objective optimization problems in a distributed manner by a network of cooperating and learning agents. The problem is equivalent to optimizing a global cost that is the sum of individual components. The optimizers of the individual components do not necessarily coincide a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2013-04, Vol.7 (2), p.205-220
Hauptverfasser: Jianshu Chen, Sayed, A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 2
container_start_page 205
container_title IEEE journal of selected topics in signal processing
container_volume 7
creator Jianshu Chen
Sayed, A. H.
description We consider solving multi-objective optimization problems in a distributed manner by a network of cooperating and learning agents. The problem is equivalent to optimizing a global cost that is the sum of individual components. The optimizers of the individual components do not necessarily coincide and the network therefore needs to seek Pareto optimal solutions. We develop a distributed solution that relies on a general class of adaptive diffusion strategies. We show how the diffusion process can be represented as the cascade composition of three operators: two combination operators and a gradient descent operator. Using the Banach fixed-point theorem, we establish the existence of a unique fixed point for the composite cascade. We then study how close each agent converges towards this fixed point, and also examine how close the Pareto solution is to the fixed point. We perform a detailed mean-square error analysis and establish that all agents are able to converge to the same Pareto optimal solution within a sufficiently small mean-square-error (MSE) bound even for constant step-sizes. We illustrate one application of the theory to collaborative decision making in finance by a network of agents.
doi_str_mv 10.1109/JSTSP.2013.2246763
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTSP_2013_2246763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6461050</ieee_id><sourcerecordid>2938968921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b67dfd9026429677903e7a99ffe26bdb7af8d621e7990891780770c8a212b0da3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt_QC8FL162Tj422RylflNoofUcsrsTSWm7NckK-uvdtcWDhzAZeN6Z4SHkksKYUtC3r4vlYj5mQPmYMSGV5EdkQLWgGYhCHPd_zjKR5_yUnMW4AsiVpGJAinsfU_Blm7AezW3A1Ixmu-Q3_tsm32xHn96O7r1zbey7RQo24bvHeE5OnF1HvDjUIXl7fFhOnrPp7OllcjfNKs6KlJVS1a7WwKRgWiqlgaOyWjuHTJZ1qawraskoKq2h0FQVoBRUhWWUlVBbPiQ3-7m70Hy0GJPZ-Fjhem232LTRUC60kN3LO_T6H7pq2rDtrusoJkS3vNMwJGxPVaGJMaAzu-A3NnwZCqaXaX5lml6mOcjsQlf7kEfEv4AUkkIO_AcDrm8d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1324479019</pqid></control><display><type>article</type><title>Distributed Pareto Optimization via Diffusion Strategies</title><source>IEEE Xplore</source><creator>Jianshu Chen ; Sayed, A. H.</creator><creatorcontrib>Jianshu Chen ; Sayed, A. H.</creatorcontrib><description>We consider solving multi-objective optimization problems in a distributed manner by a network of cooperating and learning agents. The problem is equivalent to optimizing a global cost that is the sum of individual components. The optimizers of the individual components do not necessarily coincide and the network therefore needs to seek Pareto optimal solutions. We develop a distributed solution that relies on a general class of adaptive diffusion strategies. We show how the diffusion process can be represented as the cascade composition of three operators: two combination operators and a gradient descent operator. Using the Banach fixed-point theorem, we establish the existence of a unique fixed point for the composite cascade. We then study how close each agent converges towards this fixed point, and also examine how close the Pareto solution is to the fixed point. We perform a detailed mean-square error analysis and establish that all agents are able to converge to the same Pareto optimal solution within a sufficiently small mean-square-error (MSE) bound even for constant step-sizes. We illustrate one application of the theory to collaborative decision making in finance by a network of agents.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2013.2246763</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aggregates ; Algorithms ; Cascades ; Collaborative decision making ; convergence ; Cost function ; Diffusion ; diffusion adaptation ; distributed optimization ; Equivalence ; fixed point ; mean-square performance ; Networks ; Noise ; Operators ; Optimization ; Pareto optimality ; Pareto optimization ; stability ; Strategy ; Studies ; Upper bound ; Vectors</subject><ispartof>IEEE journal of selected topics in signal processing, 2013-04, Vol.7 (2), p.205-220</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b67dfd9026429677903e7a99ffe26bdb7af8d621e7990891780770c8a212b0da3</citedby><cites>FETCH-LOGICAL-c328t-b67dfd9026429677903e7a99ffe26bdb7af8d621e7990891780770c8a212b0da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6461050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6461050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianshu Chen</creatorcontrib><creatorcontrib>Sayed, A. H.</creatorcontrib><title>Distributed Pareto Optimization via Diffusion Strategies</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>We consider solving multi-objective optimization problems in a distributed manner by a network of cooperating and learning agents. The problem is equivalent to optimizing a global cost that is the sum of individual components. The optimizers of the individual components do not necessarily coincide and the network therefore needs to seek Pareto optimal solutions. We develop a distributed solution that relies on a general class of adaptive diffusion strategies. We show how the diffusion process can be represented as the cascade composition of three operators: two combination operators and a gradient descent operator. Using the Banach fixed-point theorem, we establish the existence of a unique fixed point for the composite cascade. We then study how close each agent converges towards this fixed point, and also examine how close the Pareto solution is to the fixed point. We perform a detailed mean-square error analysis and establish that all agents are able to converge to the same Pareto optimal solution within a sufficiently small mean-square-error (MSE) bound even for constant step-sizes. We illustrate one application of the theory to collaborative decision making in finance by a network of agents.</description><subject>Aggregates</subject><subject>Algorithms</subject><subject>Cascades</subject><subject>Collaborative decision making</subject><subject>convergence</subject><subject>Cost function</subject><subject>Diffusion</subject><subject>diffusion adaptation</subject><subject>distributed optimization</subject><subject>Equivalence</subject><subject>fixed point</subject><subject>mean-square performance</subject><subject>Networks</subject><subject>Noise</subject><subject>Operators</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Pareto optimization</subject><subject>stability</subject><subject>Strategy</subject><subject>Studies</subject><subject>Upper bound</subject><subject>Vectors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt_QC8FL162Tj422RylflNoofUcsrsTSWm7NckK-uvdtcWDhzAZeN6Z4SHkksKYUtC3r4vlYj5mQPmYMSGV5EdkQLWgGYhCHPd_zjKR5_yUnMW4AsiVpGJAinsfU_Blm7AezW3A1Ixmu-Q3_tsm32xHn96O7r1zbey7RQo24bvHeE5OnF1HvDjUIXl7fFhOnrPp7OllcjfNKs6KlJVS1a7WwKRgWiqlgaOyWjuHTJZ1qawraskoKq2h0FQVoBRUhWWUlVBbPiQ3-7m70Hy0GJPZ-Fjhem232LTRUC60kN3LO_T6H7pq2rDtrusoJkS3vNMwJGxPVaGJMaAzu-A3NnwZCqaXaX5lml6mOcjsQlf7kEfEv4AUkkIO_AcDrm8d</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Jianshu Chen</creator><creator>Sayed, A. H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>Distributed Pareto Optimization via Diffusion Strategies</title><author>Jianshu Chen ; Sayed, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b67dfd9026429677903e7a99ffe26bdb7af8d621e7990891780770c8a212b0da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aggregates</topic><topic>Algorithms</topic><topic>Cascades</topic><topic>Collaborative decision making</topic><topic>convergence</topic><topic>Cost function</topic><topic>Diffusion</topic><topic>diffusion adaptation</topic><topic>distributed optimization</topic><topic>Equivalence</topic><topic>fixed point</topic><topic>mean-square performance</topic><topic>Networks</topic><topic>Noise</topic><topic>Operators</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Pareto optimization</topic><topic>stability</topic><topic>Strategy</topic><topic>Studies</topic><topic>Upper bound</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianshu Chen</creatorcontrib><creatorcontrib>Sayed, A. H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianshu Chen</au><au>Sayed, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Pareto Optimization via Diffusion Strategies</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>7</volume><issue>2</issue><spage>205</spage><epage>220</epage><pages>205-220</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>We consider solving multi-objective optimization problems in a distributed manner by a network of cooperating and learning agents. The problem is equivalent to optimizing a global cost that is the sum of individual components. The optimizers of the individual components do not necessarily coincide and the network therefore needs to seek Pareto optimal solutions. We develop a distributed solution that relies on a general class of adaptive diffusion strategies. We show how the diffusion process can be represented as the cascade composition of three operators: two combination operators and a gradient descent operator. Using the Banach fixed-point theorem, we establish the existence of a unique fixed point for the composite cascade. We then study how close each agent converges towards this fixed point, and also examine how close the Pareto solution is to the fixed point. We perform a detailed mean-square error analysis and establish that all agents are able to converge to the same Pareto optimal solution within a sufficiently small mean-square-error (MSE) bound even for constant step-sizes. We illustrate one application of the theory to collaborative decision making in finance by a network of agents.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2013.2246763</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2013-04, Vol.7 (2), p.205-220
issn 1932-4553
1941-0484
language eng
recordid cdi_crossref_primary_10_1109_JSTSP_2013_2246763
source IEEE Xplore
subjects Aggregates
Algorithms
Cascades
Collaborative decision making
convergence
Cost function
Diffusion
diffusion adaptation
distributed optimization
Equivalence
fixed point
mean-square performance
Networks
Noise
Operators
Optimization
Pareto optimality
Pareto optimization
stability
Strategy
Studies
Upper bound
Vectors
title Distributed Pareto Optimization via Diffusion Strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Pareto%20Optimization%20via%20Diffusion%20Strategies&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Jianshu%20Chen&rft.date=2013-04-01&rft.volume=7&rft.issue=2&rft.spage=205&rft.epage=220&rft.pages=205-220&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2013.2246763&rft_dat=%3Cproquest_RIE%3E2938968921%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1324479019&rft_id=info:pmid/&rft_ieee_id=6461050&rfr_iscdi=true