Diarization of Telephone Conversations Using Factor Analysis

We report on work on speaker diarization of telephone conversations which was begun at the Robust Speaker Recognition Workshop held at Johns Hopkins University in 2008. Three diarization systems were developed and experiments were conducted using the summed-channel telephone data from the 2008 NIST...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2010-12, Vol.4 (6), p.1059-1070
Hauptverfasser: Kenny, Patrick, Reynolds, Douglas, Castaldo, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1070
container_issue 6
container_start_page 1059
container_title IEEE journal of selected topics in signal processing
container_volume 4
creator Kenny, Patrick
Reynolds, Douglas
Castaldo, Fabio
description We report on work on speaker diarization of telephone conversations which was begun at the Robust Speaker Recognition Workshop held at Johns Hopkins University in 2008. Three diarization systems were developed and experiments were conducted using the summed-channel telephone data from the 2008 NIST speaker recognition evaluation. The systems are a Baseline agglomerative clustering system, a Streaming system which uses speaker factors for speaker change point detection and traditional methods for speaker clustering, and a Variational Bayes system designed to exploit a large number of speaker factors as in state of the art speaker recognition systems. The Variational Bayes system proved to be the most effective, achieving a diarization error rate of 1.0% on the summed-channel data. This represents an 85% reduction in errors compared with the Baseline agglomerative clustering system. An interesting aspect of the Variational Bayes approach is that it implicitly performs speaker clustering in a way which avoids making premature hard decisions. This type of soft speaker clustering can be incorporated into other diarization systems (although causality has to be sacrificed in the case of the Streaming system). With this modification, the Baseline system achieved a diarization error rate of 3.5% (a 50% reduction in errors).
doi_str_mv 10.1109/JSTSP.2010.2081790
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTSP_2010_2081790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5587872</ieee_id><sourcerecordid>849487478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-fdb16b7fcf75f983dfd7c3cb135f761d4cc895f57b6d81eb5020b24e27e42db13</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt_QC8LHjxtzecmAS-ltX5QUGh7DrvZRFO2m5pshfrrTT_w4GlmmOcdhgeAawQHCEF5_zqbz94HGKYZQ4G4hCeghyRFOaSCnu56gnPKGDkHFzEuIWS8QLQHHsauDO6n7JxvM2-zuWnM-tO3Jhv59tuEuN_EbBFd-5FNSt35kA3bstlGFy_BmS2baK6OtQ8Wk8f56Dmfvj29jIbTXBPMu9zWFSoqbrXlzEpBaltzTXSFCLPpi5pqLSSzjFdFLZCpGMSwwtRgbihOWdIHd4e76-C_NiZ2auWiNk1TtsZvohJUUsEpF4m8_Ucu_Sakd6NCkEDECklkovCB0sHHGIxV6-BWZdgmSO18qr1PtfOpjj5T6OYQcsaYvwBjgguOyS9o0nFv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030156939</pqid></control><display><type>article</type><title>Diarization of Telephone Conversations Using Factor Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Kenny, Patrick ; Reynolds, Douglas ; Castaldo, Fabio</creator><creatorcontrib>Kenny, Patrick ; Reynolds, Douglas ; Castaldo, Fabio</creatorcontrib><description>We report on work on speaker diarization of telephone conversations which was begun at the Robust Speaker Recognition Workshop held at Johns Hopkins University in 2008. Three diarization systems were developed and experiments were conducted using the summed-channel telephone data from the 2008 NIST speaker recognition evaluation. The systems are a Baseline agglomerative clustering system, a Streaming system which uses speaker factors for speaker change point detection and traditional methods for speaker clustering, and a Variational Bayes system designed to exploit a large number of speaker factors as in state of the art speaker recognition systems. The Variational Bayes system proved to be the most effective, achieving a diarization error rate of 1.0% on the summed-channel data. This represents an 85% reduction in errors compared with the Baseline agglomerative clustering system. An interesting aspect of the Variational Bayes approach is that it implicitly performs speaker clustering in a way which avoids making premature hard decisions. This type of soft speaker clustering can be incorporated into other diarization systems (although causality has to be sacrificed in the case of the Streaming system). With this modification, the Baseline system achieved a diarization error rate of 3.5% (a 50% reduction in errors).</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2010.2081790</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation model ; Agglomeration ; Bayesian analysis ; Bayesian methods ; Channel factors ; Clustering ; Clustering methods ; Conversation ; diarization ; Errors ; Guidelines ; Hidden Markov models ; Reduction ; speaker factors ; Speaker recognition ; speaker segmentation ; Speech ; Speech recognition ; Studies ; Telephones ; variational Bayes</subject><ispartof>IEEE journal of selected topics in signal processing, 2010-12, Vol.4 (6), p.1059-1070</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-fdb16b7fcf75f983dfd7c3cb135f761d4cc895f57b6d81eb5020b24e27e42db13</citedby><cites>FETCH-LOGICAL-c327t-fdb16b7fcf75f983dfd7c3cb135f761d4cc895f57b6d81eb5020b24e27e42db13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5587872$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5587872$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kenny, Patrick</creatorcontrib><creatorcontrib>Reynolds, Douglas</creatorcontrib><creatorcontrib>Castaldo, Fabio</creatorcontrib><title>Diarization of Telephone Conversations Using Factor Analysis</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>We report on work on speaker diarization of telephone conversations which was begun at the Robust Speaker Recognition Workshop held at Johns Hopkins University in 2008. Three diarization systems were developed and experiments were conducted using the summed-channel telephone data from the 2008 NIST speaker recognition evaluation. The systems are a Baseline agglomerative clustering system, a Streaming system which uses speaker factors for speaker change point detection and traditional methods for speaker clustering, and a Variational Bayes system designed to exploit a large number of speaker factors as in state of the art speaker recognition systems. The Variational Bayes system proved to be the most effective, achieving a diarization error rate of 1.0% on the summed-channel data. This represents an 85% reduction in errors compared with the Baseline agglomerative clustering system. An interesting aspect of the Variational Bayes approach is that it implicitly performs speaker clustering in a way which avoids making premature hard decisions. This type of soft speaker clustering can be incorporated into other diarization systems (although causality has to be sacrificed in the case of the Streaming system). With this modification, the Baseline system achieved a diarization error rate of 3.5% (a 50% reduction in errors).</description><subject>Adaptation model</subject><subject>Agglomeration</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Channel factors</subject><subject>Clustering</subject><subject>Clustering methods</subject><subject>Conversation</subject><subject>diarization</subject><subject>Errors</subject><subject>Guidelines</subject><subject>Hidden Markov models</subject><subject>Reduction</subject><subject>speaker factors</subject><subject>Speaker recognition</subject><subject>speaker segmentation</subject><subject>Speech</subject><subject>Speech recognition</subject><subject>Studies</subject><subject>Telephones</subject><subject>variational Bayes</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt_QC8LHjxtzecmAS-ltX5QUGh7DrvZRFO2m5pshfrrTT_w4GlmmOcdhgeAawQHCEF5_zqbz94HGKYZQ4G4hCeghyRFOaSCnu56gnPKGDkHFzEuIWS8QLQHHsauDO6n7JxvM2-zuWnM-tO3Jhv59tuEuN_EbBFd-5FNSt35kA3bstlGFy_BmS2baK6OtQ8Wk8f56Dmfvj29jIbTXBPMu9zWFSoqbrXlzEpBaltzTXSFCLPpi5pqLSSzjFdFLZCpGMSwwtRgbihOWdIHd4e76-C_NiZ2auWiNk1TtsZvohJUUsEpF4m8_Ucu_Sakd6NCkEDECklkovCB0sHHGIxV6-BWZdgmSO18qr1PtfOpjj5T6OYQcsaYvwBjgguOyS9o0nFv</recordid><startdate>201012</startdate><enddate>201012</enddate><creator>Kenny, Patrick</creator><creator>Reynolds, Douglas</creator><creator>Castaldo, Fabio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201012</creationdate><title>Diarization of Telephone Conversations Using Factor Analysis</title><author>Kenny, Patrick ; Reynolds, Douglas ; Castaldo, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-fdb16b7fcf75f983dfd7c3cb135f761d4cc895f57b6d81eb5020b24e27e42db13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Agglomeration</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Channel factors</topic><topic>Clustering</topic><topic>Clustering methods</topic><topic>Conversation</topic><topic>diarization</topic><topic>Errors</topic><topic>Guidelines</topic><topic>Hidden Markov models</topic><topic>Reduction</topic><topic>speaker factors</topic><topic>Speaker recognition</topic><topic>speaker segmentation</topic><topic>Speech</topic><topic>Speech recognition</topic><topic>Studies</topic><topic>Telephones</topic><topic>variational Bayes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenny, Patrick</creatorcontrib><creatorcontrib>Reynolds, Douglas</creatorcontrib><creatorcontrib>Castaldo, Fabio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kenny, Patrick</au><au>Reynolds, Douglas</au><au>Castaldo, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diarization of Telephone Conversations Using Factor Analysis</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2010-12</date><risdate>2010</risdate><volume>4</volume><issue>6</issue><spage>1059</spage><epage>1070</epage><pages>1059-1070</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>We report on work on speaker diarization of telephone conversations which was begun at the Robust Speaker Recognition Workshop held at Johns Hopkins University in 2008. Three diarization systems were developed and experiments were conducted using the summed-channel telephone data from the 2008 NIST speaker recognition evaluation. The systems are a Baseline agglomerative clustering system, a Streaming system which uses speaker factors for speaker change point detection and traditional methods for speaker clustering, and a Variational Bayes system designed to exploit a large number of speaker factors as in state of the art speaker recognition systems. The Variational Bayes system proved to be the most effective, achieving a diarization error rate of 1.0% on the summed-channel data. This represents an 85% reduction in errors compared with the Baseline agglomerative clustering system. An interesting aspect of the Variational Bayes approach is that it implicitly performs speaker clustering in a way which avoids making premature hard decisions. This type of soft speaker clustering can be incorporated into other diarization systems (although causality has to be sacrificed in the case of the Streaming system). With this modification, the Baseline system achieved a diarization error rate of 3.5% (a 50% reduction in errors).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2010.2081790</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2010-12, Vol.4 (6), p.1059-1070
issn 1932-4553
1941-0484
language eng
recordid cdi_crossref_primary_10_1109_JSTSP_2010_2081790
source IEEE Electronic Library (IEL)
subjects Adaptation model
Agglomeration
Bayesian analysis
Bayesian methods
Channel factors
Clustering
Clustering methods
Conversation
diarization
Errors
Guidelines
Hidden Markov models
Reduction
speaker factors
Speaker recognition
speaker segmentation
Speech
Speech recognition
Studies
Telephones
variational Bayes
title Diarization of Telephone Conversations Using Factor Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diarization%20of%20Telephone%20Conversations%20Using%20Factor%20Analysis&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Kenny,%20Patrick&rft.date=2010-12&rft.volume=4&rft.issue=6&rft.spage=1059&rft.epage=1070&rft.pages=1059-1070&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2010.2081790&rft_dat=%3Cproquest_RIE%3E849487478%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030156939&rft_id=info:pmid/&rft_ieee_id=5587872&rfr_iscdi=true