Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery
This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in signal processing 2010-06, Vol.4 (3), p.659-667 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | 3 |
container_start_page | 659 |
container_title | IEEE journal of selected topics in signal processing |
container_volume | 4 |
creator | Robinson, Brent W Hernandez-Garduno, David Saquib, Mohammad |
description | This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic. |
doi_str_mv | 10.1109/JSTSP.2010.2048240 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTSP_2010_2048240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5447636</ieee_id><sourcerecordid>2716829271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</originalsourceid><addsrcrecordid>eNpdkcFPwjAYxRejiYj-A3pp4sHTsO3alR0JEcFgJAHPS9d9g5KtxXYYOfmv2wnx4Kn9mt97eV9fFN0SPCAEZ48vy9VyMaA4zBSzIWX4LOqRjJE4TOy8uyc0Zpwnl9GV91uMuUgJ60XfE_0FJZKmRJPaylabdbyw2rRo1uxqaMC04dEaj2yF5tqAdGhUyl2rPwGtQG2M_tiDR5V1aOGg1KqzQIvNwWtb27VWskbTzn7loAmQNuhVK2f93q3BHa6ji0rWHm5OZz96nzytxtN4_vY8G4_msUpE2sZSSFBpqdhQVSF3QQQfJqBkQStMWVWIsGXKOECW0gIXquRFpjgDQoSqsnKY9KOHo-_O2S5wmzfaK6hracDufS54IqjIMA3k_T9ya_fOhHA5wVSQ8LkpDhQ9Ut0q3kGV75xupDsEKO8qyX8rybtK8lMlQXR3FGkA-BNwxkSapMkPvHeKNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027182460</pqid></control><display><type>article</type><title>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</title><source>IEEE Electronic Library (IEL)</source><creator>Robinson, Brent W ; Hernandez-Garduno, David ; Saquib, Mohammad</creator><creatorcontrib>Robinson, Brent W ; Hernandez-Garduno, David ; Saquib, Mohammad</creatorcontrib><description>This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2010.2048240</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive arrays ; Adaptive filters ; Algorithms ; Architecture ; Arithmetic ; autoregressive (AR) ; Clocks ; Convergence ; Convergence of numerical methods ; Field programmable gate arrays ; field programmable gate arrays (FPGAs) ; fixed-point arithmetic ; Floating point arithmetic ; Format ; hand tremor ; Hardware ; Kalman ; Kalman filters ; Mean square error methods ; Microsurgery ; recursive least-squares ; Resonance light scattering ; Studies ; Surgery ; Tremors</subject><ispartof>IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.659-667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</citedby><cites>FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5447636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5447636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Robinson, Brent W</creatorcontrib><creatorcontrib>Hernandez-Garduno, David</creatorcontrib><creatorcontrib>Saquib, Mohammad</creatorcontrib><title>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic.</description><subject>Adaptive arrays</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Architecture</subject><subject>Arithmetic</subject><subject>autoregressive (AR)</subject><subject>Clocks</subject><subject>Convergence</subject><subject>Convergence of numerical methods</subject><subject>Field programmable gate arrays</subject><subject>field programmable gate arrays (FPGAs)</subject><subject>fixed-point arithmetic</subject><subject>Floating point arithmetic</subject><subject>Format</subject><subject>hand tremor</subject><subject>Hardware</subject><subject>Kalman</subject><subject>Kalman filters</subject><subject>Mean square error methods</subject><subject>Microsurgery</subject><subject>recursive least-squares</subject><subject>Resonance light scattering</subject><subject>Studies</subject><subject>Surgery</subject><subject>Tremors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFPwjAYxRejiYj-A3pp4sHTsO3alR0JEcFgJAHPS9d9g5KtxXYYOfmv2wnx4Kn9mt97eV9fFN0SPCAEZ48vy9VyMaA4zBSzIWX4LOqRjJE4TOy8uyc0Zpwnl9GV91uMuUgJ60XfE_0FJZKmRJPaylabdbyw2rRo1uxqaMC04dEaj2yF5tqAdGhUyl2rPwGtQG2M_tiDR5V1aOGg1KqzQIvNwWtb27VWskbTzn7loAmQNuhVK2f93q3BHa6ji0rWHm5OZz96nzytxtN4_vY8G4_msUpE2sZSSFBpqdhQVSF3QQQfJqBkQStMWVWIsGXKOECW0gIXquRFpjgDQoSqsnKY9KOHo-_O2S5wmzfaK6hracDufS54IqjIMA3k_T9ya_fOhHA5wVSQ8LkpDhQ9Ut0q3kGV75xupDsEKO8qyX8rybtK8lMlQXR3FGkA-BNwxkSapMkPvHeKNQ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Robinson, Brent W</creator><creator>Hernandez-Garduno, David</creator><creator>Saquib, Mohammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201006</creationdate><title>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</title><author>Robinson, Brent W ; Hernandez-Garduno, David ; Saquib, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive arrays</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Architecture</topic><topic>Arithmetic</topic><topic>autoregressive (AR)</topic><topic>Clocks</topic><topic>Convergence</topic><topic>Convergence of numerical methods</topic><topic>Field programmable gate arrays</topic><topic>field programmable gate arrays (FPGAs)</topic><topic>fixed-point arithmetic</topic><topic>Floating point arithmetic</topic><topic>Format</topic><topic>hand tremor</topic><topic>Hardware</topic><topic>Kalman</topic><topic>Kalman filters</topic><topic>Mean square error methods</topic><topic>Microsurgery</topic><topic>recursive least-squares</topic><topic>Resonance light scattering</topic><topic>Studies</topic><topic>Surgery</topic><topic>Tremors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Brent W</creatorcontrib><creatorcontrib>Hernandez-Garduno, David</creatorcontrib><creatorcontrib>Saquib, Mohammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Robinson, Brent W</au><au>Hernandez-Garduno, David</au><au>Saquib, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2010-06</date><risdate>2010</risdate><volume>4</volume><issue>3</issue><spage>659</spage><epage>667</epage><pages>659-667</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2010.2048240</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4553 |
ispartof | IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.659-667 |
issn | 1932-4553 1941-0484 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTSP_2010_2048240 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive arrays Adaptive filters Algorithms Architecture Arithmetic autoregressive (AR) Clocks Convergence Convergence of numerical methods Field programmable gate arrays field programmable gate arrays (FPGAs) fixed-point arithmetic Floating point arithmetic Format hand tremor Hardware Kalman Kalman filters Mean square error methods Microsurgery recursive least-squares Resonance light scattering Studies Surgery Tremors |
title | Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20and%20Floating-Point%20Implementations%20of%20Linear%20Adaptive%20Techniques%20for%20Predicting%20Physiological%20Hand%20Tremor%20in%20Microsurgery&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Robinson,%20Brent%20W&rft.date=2010-06&rft.volume=4&rft.issue=3&rft.spage=659&rft.epage=667&rft.pages=659-667&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2010.2048240&rft_dat=%3Cproquest_RIE%3E2716829271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027182460&rft_id=info:pmid/&rft_ieee_id=5447636&rfr_iscdi=true |