Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery

This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2010-06, Vol.4 (3), p.659-667
Hauptverfasser: Robinson, Brent W, Hernandez-Garduno, David, Saquib, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue 3
container_start_page 659
container_title IEEE journal of selected topics in signal processing
container_volume 4
creator Robinson, Brent W
Hernandez-Garduno, David
Saquib, Mohammad
description This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic.
doi_str_mv 10.1109/JSTSP.2010.2048240
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTSP_2010_2048240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5447636</ieee_id><sourcerecordid>2716829271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</originalsourceid><addsrcrecordid>eNpdkcFPwjAYxRejiYj-A3pp4sHTsO3alR0JEcFgJAHPS9d9g5KtxXYYOfmv2wnx4Kn9mt97eV9fFN0SPCAEZ48vy9VyMaA4zBSzIWX4LOqRjJE4TOy8uyc0Zpwnl9GV91uMuUgJ60XfE_0FJZKmRJPaylabdbyw2rRo1uxqaMC04dEaj2yF5tqAdGhUyl2rPwGtQG2M_tiDR5V1aOGg1KqzQIvNwWtb27VWskbTzn7loAmQNuhVK2f93q3BHa6ji0rWHm5OZz96nzytxtN4_vY8G4_msUpE2sZSSFBpqdhQVSF3QQQfJqBkQStMWVWIsGXKOECW0gIXquRFpjgDQoSqsnKY9KOHo-_O2S5wmzfaK6hracDufS54IqjIMA3k_T9ya_fOhHA5wVSQ8LkpDhQ9Ut0q3kGV75xupDsEKO8qyX8rybtK8lMlQXR3FGkA-BNwxkSapMkPvHeKNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027182460</pqid></control><display><type>article</type><title>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</title><source>IEEE Electronic Library (IEL)</source><creator>Robinson, Brent W ; Hernandez-Garduno, David ; Saquib, Mohammad</creator><creatorcontrib>Robinson, Brent W ; Hernandez-Garduno, David ; Saquib, Mohammad</creatorcontrib><description>This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2010.2048240</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive arrays ; Adaptive filters ; Algorithms ; Architecture ; Arithmetic ; autoregressive (AR) ; Clocks ; Convergence ; Convergence of numerical methods ; Field programmable gate arrays ; field programmable gate arrays (FPGAs) ; fixed-point arithmetic ; Floating point arithmetic ; Format ; hand tremor ; Hardware ; Kalman ; Kalman filters ; Mean square error methods ; Microsurgery ; recursive least-squares ; Resonance light scattering ; Studies ; Surgery ; Tremors</subject><ispartof>IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.659-667</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</citedby><cites>FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5447636$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5447636$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Robinson, Brent W</creatorcontrib><creatorcontrib>Hernandez-Garduno, David</creatorcontrib><creatorcontrib>Saquib, Mohammad</creatorcontrib><title>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic.</description><subject>Adaptive arrays</subject><subject>Adaptive filters</subject><subject>Algorithms</subject><subject>Architecture</subject><subject>Arithmetic</subject><subject>autoregressive (AR)</subject><subject>Clocks</subject><subject>Convergence</subject><subject>Convergence of numerical methods</subject><subject>Field programmable gate arrays</subject><subject>field programmable gate arrays (FPGAs)</subject><subject>fixed-point arithmetic</subject><subject>Floating point arithmetic</subject><subject>Format</subject><subject>hand tremor</subject><subject>Hardware</subject><subject>Kalman</subject><subject>Kalman filters</subject><subject>Mean square error methods</subject><subject>Microsurgery</subject><subject>recursive least-squares</subject><subject>Resonance light scattering</subject><subject>Studies</subject><subject>Surgery</subject><subject>Tremors</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkcFPwjAYxRejiYj-A3pp4sHTsO3alR0JEcFgJAHPS9d9g5KtxXYYOfmv2wnx4Kn9mt97eV9fFN0SPCAEZ48vy9VyMaA4zBSzIWX4LOqRjJE4TOy8uyc0Zpwnl9GV91uMuUgJ60XfE_0FJZKmRJPaylabdbyw2rRo1uxqaMC04dEaj2yF5tqAdGhUyl2rPwGtQG2M_tiDR5V1aOGg1KqzQIvNwWtb27VWskbTzn7loAmQNuhVK2f93q3BHa6ji0rWHm5OZz96nzytxtN4_vY8G4_msUpE2sZSSFBpqdhQVSF3QQQfJqBkQStMWVWIsGXKOECW0gIXquRFpjgDQoSqsnKY9KOHo-_O2S5wmzfaK6hracDufS54IqjIMA3k_T9ya_fOhHA5wVSQ8LkpDhQ9Ut0q3kGV75xupDsEKO8qyX8rybtK8lMlQXR3FGkA-BNwxkSapMkPvHeKNQ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Robinson, Brent W</creator><creator>Hernandez-Garduno, David</creator><creator>Saquib, Mohammad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201006</creationdate><title>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</title><author>Robinson, Brent W ; Hernandez-Garduno, David ; Saquib, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a7aec6dc48cf614b17583ecab2f024fb7484645ee962b0bcd5b9c54e117cf9d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive arrays</topic><topic>Adaptive filters</topic><topic>Algorithms</topic><topic>Architecture</topic><topic>Arithmetic</topic><topic>autoregressive (AR)</topic><topic>Clocks</topic><topic>Convergence</topic><topic>Convergence of numerical methods</topic><topic>Field programmable gate arrays</topic><topic>field programmable gate arrays (FPGAs)</topic><topic>fixed-point arithmetic</topic><topic>Floating point arithmetic</topic><topic>Format</topic><topic>hand tremor</topic><topic>Hardware</topic><topic>Kalman</topic><topic>Kalman filters</topic><topic>Mean square error methods</topic><topic>Microsurgery</topic><topic>recursive least-squares</topic><topic>Resonance light scattering</topic><topic>Studies</topic><topic>Surgery</topic><topic>Tremors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Brent W</creatorcontrib><creatorcontrib>Hernandez-Garduno, David</creatorcontrib><creatorcontrib>Saquib, Mohammad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Robinson, Brent W</au><au>Hernandez-Garduno, David</au><au>Saquib, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2010-06</date><risdate>2010</risdate><volume>4</volume><issue>3</issue><spage>659</spage><epage>667</epage><pages>659-667</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>This paper presents the fixed and floating-point implementations for field-programmable gate arrays (FPGAs) of third-order hand tremor predictors using recursive-least square (RLS) and a proposed Kalman adaptation algorithm. The proposed algorithm outperforms RLS in convergence speed and mean square error (MSE). It also shows better numerical convergence than the RLS as the number of bits in fixed-point precision is reduced. Both fixed and floating-point realizations are implemented and the hardware tradeoffs are discussed. A modified binary floating-point format is proposed that takes advantage of the 18-bit hard macro multiplier within the Virtex 5 Architecture in order to gain precision while preserving clock speed. The increased precision overcomes the prior known issues of explosive divergence and the stalling effect associated with the fixed-point implementation of such adaptive algorithms, proving the feasibility of an FPGA based physiological hand tremor predictor. In order to demonstrate the tradeoff between the performance and the hardware complexity, we quantify the penalty paid by the system in terms of MSE due to the use of lower precision arithmetic.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2010.2048240</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2010-06, Vol.4 (3), p.659-667
issn 1932-4553
1941-0484
language eng
recordid cdi_crossref_primary_10_1109_JSTSP_2010_2048240
source IEEE Electronic Library (IEL)
subjects Adaptive arrays
Adaptive filters
Algorithms
Architecture
Arithmetic
autoregressive (AR)
Clocks
Convergence
Convergence of numerical methods
Field programmable gate arrays
field programmable gate arrays (FPGAs)
fixed-point arithmetic
Floating point arithmetic
Format
hand tremor
Hardware
Kalman
Kalman filters
Mean square error methods
Microsurgery
recursive least-squares
Resonance light scattering
Studies
Surgery
Tremors
title Fixed and Floating-Point Implementations of Linear Adaptive Techniques for Predicting Physiological Hand Tremor in Microsurgery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T10%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixed%20and%20Floating-Point%20Implementations%20of%20Linear%20Adaptive%20Techniques%20for%20Predicting%20Physiological%20Hand%20Tremor%20in%20Microsurgery&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Robinson,%20Brent%20W&rft.date=2010-06&rft.volume=4&rft.issue=3&rft.spage=659&rft.epage=667&rft.pages=659-667&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2010.2048240&rft_dat=%3Cproquest_RIE%3E2716829271%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027182460&rft_id=info:pmid/&rft_ieee_id=5447636&rfr_iscdi=true