Automated Ovarian Cancer Identification Using End-to-End Deep Learning and Second Harmonic Generation Imaging

Surgery is one of the most important methods for the treatment of ovarian cancer. During this procedure, a biopsy is usually required to evaluate the suspicious lesions and provide guidance for the size of the surgical resection. However, the conventional biopsy for intraoperative histopathological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2023-07, Vol.29 (4: Biophotonics), p.1-9
Hauptverfasser: Wang, Guangxing, Zhan, Huiling, Luo, Tianyi, Kang, Bingzi, Li, Xiaolu, Xi, Gangqin, Liu, Zhiyi, Zhuo, Shuangmu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 4: Biophotonics
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 29
creator Wang, Guangxing
Zhan, Huiling
Luo, Tianyi
Kang, Bingzi
Li, Xiaolu
Xi, Gangqin
Liu, Zhiyi
Zhuo, Shuangmu
description Surgery is one of the most important methods for the treatment of ovarian cancer. During this procedure, a biopsy is usually required to evaluate the suspicious lesions and provide guidance for the size of the surgical resection. However, the conventional biopsy for intraoperative histopathological diagnosis performed by trained pathologists is labor-intensive, time-consuming, and carries the risk of bias. Therefore, we present a novel optical biopsy method to assist physicians in accurately and rapidly diagnosing ovarian cancer during surgery. We demonstrate that second harmonic generation (SHG) images of unstained, freshly resected ovarian tissues can be accurately characterized by deep learning techniques. Using 13,563 SHG images obtained from freshly resected human ovarian tissues of 74 patients, we fine-trained a convolutional neural network (CNN) based on pretrained ResNet50 framework to distinguish normal, benign, and malignant ovarian tissue with an average accuracy of 99.7%. These results suggest that optical biopsies based on label-free SHG imaging and deep learning technology have great potential for rapid and accurate characterizations of ovarian lesions in surgery.
doi_str_mv 10.1109/JSTQE.2022.3228567
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2022_3228567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9982414</ieee_id><sourcerecordid>2758722793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-719b198b59d83dc1967765f265aaf5528bfae0bd51d70ff0559fe83f7102b1b43</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcvoDcBrzuTtGmSS5lzmwyGbAPvQtqejAybzLQTfHszN7z6w8n_nQMfQveUjCgl6ulttX6fjBhhbJQzJnkpLtCAci6zghfsMr2JEBkrycc1uum6HSFEFpIMUPt86ENremjw8ttEZzweG19DxPMGfO-sq03vgsebzvktnvgm60OWAr8A7PECTPTHD5MmK6hDipmJbfCuxlPwEE_0vDXbVLtFV9Z8dnB3ziHavE7W41m2WE7n4-dFVjPF-0xQVVElK64amTc1VaUQJbes5MZYzpmsrAFSNZw2glhLOFcWZG4FJayiVZEP0eNp7z6GrwN0vd6FQ_TppGaCS8GYUHlqsVOrjqHrIli9j6418UdToo9a9Z9WfdSqz1oT9HCCHAD8A0pJVtAi_wUOcnQD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758722793</pqid></control><display><type>article</type><title>Automated Ovarian Cancer Identification Using End-to-End Deep Learning and Second Harmonic Generation Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Guangxing ; Zhan, Huiling ; Luo, Tianyi ; Kang, Bingzi ; Li, Xiaolu ; Xi, Gangqin ; Liu, Zhiyi ; Zhuo, Shuangmu</creator><creatorcontrib>Wang, Guangxing ; Zhan, Huiling ; Luo, Tianyi ; Kang, Bingzi ; Li, Xiaolu ; Xi, Gangqin ; Liu, Zhiyi ; Zhuo, Shuangmu</creatorcontrib><description>Surgery is one of the most important methods for the treatment of ovarian cancer. During this procedure, a biopsy is usually required to evaluate the suspicious lesions and provide guidance for the size of the surgical resection. However, the conventional biopsy for intraoperative histopathological diagnosis performed by trained pathologists is labor-intensive, time-consuming, and carries the risk of bias. Therefore, we present a novel optical biopsy method to assist physicians in accurately and rapidly diagnosing ovarian cancer during surgery. We demonstrate that second harmonic generation (SHG) images of unstained, freshly resected ovarian tissues can be accurately characterized by deep learning techniques. Using 13,563 SHG images obtained from freshly resected human ovarian tissues of 74 patients, we fine-trained a convolutional neural network (CNN) based on pretrained ResNet50 framework to distinguish normal, benign, and malignant ovarian tissue with an average accuracy of 99.7%. These results suggest that optical biopsies based on label-free SHG imaging and deep learning technology have great potential for rapid and accurate characterizations of ovarian lesions in surgery.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2022.3228567</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Biopsy ; Cancer ; Convolutional neural networks ; Deep learning ; Feature extraction ; Imaging ; Lesions ; Medical imaging ; optical biopsy ; Ovarian cancer ; Second harmonic generation ; second harmonic generation imaging (SHG) ; Surgery ; Training</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2023-07, Vol.29 (4: Biophotonics), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-719b198b59d83dc1967765f265aaf5528bfae0bd51d70ff0559fe83f7102b1b43</citedby><cites>FETCH-LOGICAL-c295t-719b198b59d83dc1967765f265aaf5528bfae0bd51d70ff0559fe83f7102b1b43</cites><orcidid>0000-0002-8122-8474 ; 0000-0001-5767-5197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9982414$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9982414$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Guangxing</creatorcontrib><creatorcontrib>Zhan, Huiling</creatorcontrib><creatorcontrib>Luo, Tianyi</creatorcontrib><creatorcontrib>Kang, Bingzi</creatorcontrib><creatorcontrib>Li, Xiaolu</creatorcontrib><creatorcontrib>Xi, Gangqin</creatorcontrib><creatorcontrib>Liu, Zhiyi</creatorcontrib><creatorcontrib>Zhuo, Shuangmu</creatorcontrib><title>Automated Ovarian Cancer Identification Using End-to-End Deep Learning and Second Harmonic Generation Imaging</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Surgery is one of the most important methods for the treatment of ovarian cancer. During this procedure, a biopsy is usually required to evaluate the suspicious lesions and provide guidance for the size of the surgical resection. However, the conventional biopsy for intraoperative histopathological diagnosis performed by trained pathologists is labor-intensive, time-consuming, and carries the risk of bias. Therefore, we present a novel optical biopsy method to assist physicians in accurately and rapidly diagnosing ovarian cancer during surgery. We demonstrate that second harmonic generation (SHG) images of unstained, freshly resected ovarian tissues can be accurately characterized by deep learning techniques. Using 13,563 SHG images obtained from freshly resected human ovarian tissues of 74 patients, we fine-trained a convolutional neural network (CNN) based on pretrained ResNet50 framework to distinguish normal, benign, and malignant ovarian tissue with an average accuracy of 99.7%. These results suggest that optical biopsies based on label-free SHG imaging and deep learning technology have great potential for rapid and accurate characterizations of ovarian lesions in surgery.</description><subject>Artificial neural networks</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Medical imaging</subject><subject>optical biopsy</subject><subject>Ovarian cancer</subject><subject>Second harmonic generation</subject><subject>second harmonic generation imaging (SHG)</subject><subject>Surgery</subject><subject>Training</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcvoDcBrzuTtGmSS5lzmwyGbAPvQtqejAybzLQTfHszN7z6w8n_nQMfQveUjCgl6ulttX6fjBhhbJQzJnkpLtCAci6zghfsMr2JEBkrycc1uum6HSFEFpIMUPt86ENremjw8ttEZzweG19DxPMGfO-sq03vgsebzvktnvgm60OWAr8A7PECTPTHD5MmK6hDipmJbfCuxlPwEE_0vDXbVLtFV9Z8dnB3ziHavE7W41m2WE7n4-dFVjPF-0xQVVElK64amTc1VaUQJbes5MZYzpmsrAFSNZw2glhLOFcWZG4FJayiVZEP0eNp7z6GrwN0vd6FQ_TppGaCS8GYUHlqsVOrjqHrIli9j6418UdToo9a9Z9WfdSqz1oT9HCCHAD8A0pJVtAi_wUOcnQD</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Guangxing</creator><creator>Zhan, Huiling</creator><creator>Luo, Tianyi</creator><creator>Kang, Bingzi</creator><creator>Li, Xiaolu</creator><creator>Xi, Gangqin</creator><creator>Liu, Zhiyi</creator><creator>Zhuo, Shuangmu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8122-8474</orcidid><orcidid>https://orcid.org/0000-0001-5767-5197</orcidid></search><sort><creationdate>20230701</creationdate><title>Automated Ovarian Cancer Identification Using End-to-End Deep Learning and Second Harmonic Generation Imaging</title><author>Wang, Guangxing ; Zhan, Huiling ; Luo, Tianyi ; Kang, Bingzi ; Li, Xiaolu ; Xi, Gangqin ; Liu, Zhiyi ; Zhuo, Shuangmu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-719b198b59d83dc1967765f265aaf5528bfae0bd51d70ff0559fe83f7102b1b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Medical imaging</topic><topic>optical biopsy</topic><topic>Ovarian cancer</topic><topic>Second harmonic generation</topic><topic>second harmonic generation imaging (SHG)</topic><topic>Surgery</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guangxing</creatorcontrib><creatorcontrib>Zhan, Huiling</creatorcontrib><creatorcontrib>Luo, Tianyi</creatorcontrib><creatorcontrib>Kang, Bingzi</creatorcontrib><creatorcontrib>Li, Xiaolu</creatorcontrib><creatorcontrib>Xi, Gangqin</creatorcontrib><creatorcontrib>Liu, Zhiyi</creatorcontrib><creatorcontrib>Zhuo, Shuangmu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Guangxing</au><au>Zhan, Huiling</au><au>Luo, Tianyi</au><au>Kang, Bingzi</au><au>Li, Xiaolu</au><au>Xi, Gangqin</au><au>Liu, Zhiyi</au><au>Zhuo, Shuangmu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated Ovarian Cancer Identification Using End-to-End Deep Learning and Second Harmonic Generation Imaging</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>29</volume><issue>4: Biophotonics</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Surgery is one of the most important methods for the treatment of ovarian cancer. During this procedure, a biopsy is usually required to evaluate the suspicious lesions and provide guidance for the size of the surgical resection. However, the conventional biopsy for intraoperative histopathological diagnosis performed by trained pathologists is labor-intensive, time-consuming, and carries the risk of bias. Therefore, we present a novel optical biopsy method to assist physicians in accurately and rapidly diagnosing ovarian cancer during surgery. We demonstrate that second harmonic generation (SHG) images of unstained, freshly resected ovarian tissues can be accurately characterized by deep learning techniques. Using 13,563 SHG images obtained from freshly resected human ovarian tissues of 74 patients, we fine-trained a convolutional neural network (CNN) based on pretrained ResNet50 framework to distinguish normal, benign, and malignant ovarian tissue with an average accuracy of 99.7%. These results suggest that optical biopsies based on label-free SHG imaging and deep learning technology have great potential for rapid and accurate characterizations of ovarian lesions in surgery.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2022.3228567</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8122-8474</orcidid><orcidid>https://orcid.org/0000-0001-5767-5197</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2023-07, Vol.29 (4: Biophotonics), p.1-9
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_JSTQE_2022_3228567
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Biopsy
Cancer
Convolutional neural networks
Deep learning
Feature extraction
Imaging
Lesions
Medical imaging
optical biopsy
Ovarian cancer
Second harmonic generation
second harmonic generation imaging (SHG)
Surgery
Training
title Automated Ovarian Cancer Identification Using End-to-End Deep Learning and Second Harmonic Generation Imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20Ovarian%20Cancer%20Identification%20Using%20End-to-End%20Deep%20Learning%20and%20Second%20Harmonic%20Generation%20Imaging&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Wang,%20Guangxing&rft.date=2023-07-01&rft.volume=29&rft.issue=4:%20Biophotonics&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2022.3228567&rft_dat=%3Cproquest_RIE%3E2758722793%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758722793&rft_id=info:pmid/&rft_ieee_id=9982414&rfr_iscdi=true