Non-Volatile Reconfigurable Silicon Photonics Based on Phase-Change Materials

The traditional ways of tuning a silicon photonic network are mainly based on the thermo-optic effect or the free carrier dispersion. The drawbacks of these methods are the volatile nature and the extremely small change in the complex refractive index (Δn

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2022-05, Vol.28 (3: Hybrid Integration for Silicon Photonics), p.1-17
Hauptverfasser: Fang, Zhuoran, Chen, Rui, Zheng, Jiajiu, Majumdar, Arka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 3: Hybrid Integration for Silicon Photonics
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 28
creator Fang, Zhuoran
Chen, Rui
Zheng, Jiajiu
Majumdar, Arka
description The traditional ways of tuning a silicon photonic network are mainly based on the thermo-optic effect or the free carrier dispersion. The drawbacks of these methods are the volatile nature and the extremely small change in the complex refractive index (Δn
doi_str_mv 10.1109/JSTQE.2021.3120713
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2021_3120713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9580586</ieee_id><sourcerecordid>2595718093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-2dcc33f0d606bbf1b9beeca48eab6a8191156b677632fbe6346ebf8db9fce9563</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwB-ASiXOKH7FjH6EqL7W8WhA3y07WrasSFyc98O9xacVpZ0czu9KH0DnBA0Kwunqczl5HA4opGTBCcUnYAeoRzmVe8IIeJo3LMqcCfx6jk7ZdYoxlIXEPTZ5Ck3-Elen8CrI3qELj_HwTjU3r1K98MrKXRehC46s2uzEt1NmflVQ-XJhmDtnEdBC9WbWn6MilAWf72Ufvt6PZ8D4fP989DK_HecWY6nJaV0k4XAssrHXEKgtQmUKCscJIogjhwoqyFIw6C4IVAqyTtVWuAsUF66PL3d11DN8baDu9DJvYpJeacsVLIrFiKUV3qSqGto3g9Dr6LxN_NMF6i03_YdNbbHqPLZUudiUPAP8FxSXmUrBfEJtp4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595718093</pqid></control><display><type>article</type><title>Non-Volatile Reconfigurable Silicon Photonics Based on Phase-Change Materials</title><source>IEEE Electronic Library (IEL)</source><creator>Fang, Zhuoran ; Chen, Rui ; Zheng, Jiajiu ; Majumdar, Arka</creator><creatorcontrib>Fang, Zhuoran ; Chen, Rui ; Zheng, Jiajiu ; Majumdar, Arka</creatorcontrib><description>The traditional ways of tuning a silicon photonic network are mainly based on the thermo-optic effect or the free carrier dispersion. The drawbacks of these methods are the volatile nature and the extremely small change in the complex refractive index (Δn&lt;0.001). In order to achieve low energy consumption and smaller footprint for applications such as photonic memories, optical computing, programmable gate array, and optical neural network, it is essential that the two optical states of the system exhibit high optical contrast and remain non-volatile. Phase change materials (PCMs) such as Ge 2 Sb 2 Te 5 provide an excellent solution, thanks to the drastic contrast in refractive index between two states which can be switched reversibly and in a non-volatile fashion. Here, we review the recent progress in the field of non-volatile reconfigurable silicon photonics based on PCMs. We start with a general introduction to the material properties of PCMs that have been exploited in integrated photonics and discuss their operating wavelengths. The various photonic switches that are built upon these PCMs are reviewed. Lastly, we review the recent applications of PCM-based photonic integrated circuits and discuss the potential future directions of this field.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2021.3120713</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bonding ; Energy consumption ; Gate arrays ; Integrated circuits ; Material properties ; Neural networks ; Optical refraction ; Optical switches ; Optical variables control ; Phase change materials ; Photonics ; Pulse modulation ; reconfigurable photonics ; Reconfiguration ; Refractivity ; Silicon ; Silicon photonics ; Switches</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2022-05, Vol.28 (3: Hybrid Integration for Silicon Photonics), p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-2dcc33f0d606bbf1b9beeca48eab6a8191156b677632fbe6346ebf8db9fce9563</citedby><cites>FETCH-LOGICAL-c339t-2dcc33f0d606bbf1b9beeca48eab6a8191156b677632fbe6346ebf8db9fce9563</cites><orcidid>0000-0003-0917-590X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9580586$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Fang, Zhuoran</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Zheng, Jiajiu</creatorcontrib><creatorcontrib>Majumdar, Arka</creatorcontrib><title>Non-Volatile Reconfigurable Silicon Photonics Based on Phase-Change Materials</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>The traditional ways of tuning a silicon photonic network are mainly based on the thermo-optic effect or the free carrier dispersion. The drawbacks of these methods are the volatile nature and the extremely small change in the complex refractive index (Δn&lt;0.001). In order to achieve low energy consumption and smaller footprint for applications such as photonic memories, optical computing, programmable gate array, and optical neural network, it is essential that the two optical states of the system exhibit high optical contrast and remain non-volatile. Phase change materials (PCMs) such as Ge 2 Sb 2 Te 5 provide an excellent solution, thanks to the drastic contrast in refractive index between two states which can be switched reversibly and in a non-volatile fashion. Here, we review the recent progress in the field of non-volatile reconfigurable silicon photonics based on PCMs. We start with a general introduction to the material properties of PCMs that have been exploited in integrated photonics and discuss their operating wavelengths. The various photonic switches that are built upon these PCMs are reviewed. Lastly, we review the recent applications of PCM-based photonic integrated circuits and discuss the potential future directions of this field.</description><subject>Bonding</subject><subject>Energy consumption</subject><subject>Gate arrays</subject><subject>Integrated circuits</subject><subject>Material properties</subject><subject>Neural networks</subject><subject>Optical refraction</subject><subject>Optical switches</subject><subject>Optical variables control</subject><subject>Phase change materials</subject><subject>Photonics</subject><subject>Pulse modulation</subject><subject>reconfigurable photonics</subject><subject>Reconfiguration</subject><subject>Refractivity</subject><subject>Silicon</subject><subject>Silicon photonics</subject><subject>Switches</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwB-ASiXOKH7FjH6EqL7W8WhA3y07WrasSFyc98O9xacVpZ0czu9KH0DnBA0Kwunqczl5HA4opGTBCcUnYAeoRzmVe8IIeJo3LMqcCfx6jk7ZdYoxlIXEPTZ5Ck3-Elen8CrI3qELj_HwTjU3r1K98MrKXRehC46s2uzEt1NmflVQ-XJhmDtnEdBC9WbWn6MilAWf72Ufvt6PZ8D4fP989DK_HecWY6nJaV0k4XAssrHXEKgtQmUKCscJIogjhwoqyFIw6C4IVAqyTtVWuAsUF66PL3d11DN8baDu9DJvYpJeacsVLIrFiKUV3qSqGto3g9Dr6LxN_NMF6i03_YdNbbHqPLZUudiUPAP8FxSXmUrBfEJtp4w</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Fang, Zhuoran</creator><creator>Chen, Rui</creator><creator>Zheng, Jiajiu</creator><creator>Majumdar, Arka</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0917-590X</orcidid></search><sort><creationdate>20220501</creationdate><title>Non-Volatile Reconfigurable Silicon Photonics Based on Phase-Change Materials</title><author>Fang, Zhuoran ; Chen, Rui ; Zheng, Jiajiu ; Majumdar, Arka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-2dcc33f0d606bbf1b9beeca48eab6a8191156b677632fbe6346ebf8db9fce9563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding</topic><topic>Energy consumption</topic><topic>Gate arrays</topic><topic>Integrated circuits</topic><topic>Material properties</topic><topic>Neural networks</topic><topic>Optical refraction</topic><topic>Optical switches</topic><topic>Optical variables control</topic><topic>Phase change materials</topic><topic>Photonics</topic><topic>Pulse modulation</topic><topic>reconfigurable photonics</topic><topic>Reconfiguration</topic><topic>Refractivity</topic><topic>Silicon</topic><topic>Silicon photonics</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Zhuoran</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Zheng, Jiajiu</creatorcontrib><creatorcontrib>Majumdar, Arka</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Zhuoran</au><au>Chen, Rui</au><au>Zheng, Jiajiu</au><au>Majumdar, Arka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Volatile Reconfigurable Silicon Photonics Based on Phase-Change Materials</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>28</volume><issue>3: Hybrid Integration for Silicon Photonics</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>The traditional ways of tuning a silicon photonic network are mainly based on the thermo-optic effect or the free carrier dispersion. The drawbacks of these methods are the volatile nature and the extremely small change in the complex refractive index (Δn&lt;0.001). In order to achieve low energy consumption and smaller footprint for applications such as photonic memories, optical computing, programmable gate array, and optical neural network, it is essential that the two optical states of the system exhibit high optical contrast and remain non-volatile. Phase change materials (PCMs) such as Ge 2 Sb 2 Te 5 provide an excellent solution, thanks to the drastic contrast in refractive index between two states which can be switched reversibly and in a non-volatile fashion. Here, we review the recent progress in the field of non-volatile reconfigurable silicon photonics based on PCMs. We start with a general introduction to the material properties of PCMs that have been exploited in integrated photonics and discuss their operating wavelengths. The various photonic switches that are built upon these PCMs are reviewed. Lastly, we review the recent applications of PCM-based photonic integrated circuits and discuss the potential future directions of this field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2021.3120713</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0917-590X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2022-05, Vol.28 (3: Hybrid Integration for Silicon Photonics), p.1-17
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_JSTQE_2021_3120713
source IEEE Electronic Library (IEL)
subjects Bonding
Energy consumption
Gate arrays
Integrated circuits
Material properties
Neural networks
Optical refraction
Optical switches
Optical variables control
Phase change materials
Photonics
Pulse modulation
reconfigurable photonics
Reconfiguration
Refractivity
Silicon
Silicon photonics
Switches
title Non-Volatile Reconfigurable Silicon Photonics Based on Phase-Change Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Volatile%20Reconfigurable%20Silicon%20Photonics%20Based%20on%20Phase-Change%20Materials&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Fang,%20Zhuoran&rft.date=2022-05-01&rft.volume=28&rft.issue=3:%20Hybrid%20Integration%20for%20Silicon%20Photonics&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2021.3120713&rft_dat=%3Cproquest_cross%3E2595718093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595718093&rft_id=info:pmid/&rft_ieee_id=9580586&rfr_iscdi=true