Valley-Hall Topological Plasmons in a Graphene Nanohole Plasmonic Crystal Waveguide

We demonstrate that unidirectional and backscattering immune propagation of terahertz optical waves can be achieved in a topological valley-Hall waveguide made of graphene nanohole plasmonic crystals. In order to gain deeper physical insights into these phenomena, the band diagram of graphene nanoho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2020-11, Vol.26 (6), p.1-8
Hauptverfasser: You, Jian Wei, Lan, Zhihao, Bao, Qiaoliang, Panoiu, Nicolae C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 6
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 26
creator You, Jian Wei
Lan, Zhihao
Bao, Qiaoliang
Panoiu, Nicolae C.
description We demonstrate that unidirectional and backscattering immune propagation of terahertz optical waves can be achieved in a topological valley-Hall waveguide made of graphene nanohole plasmonic crystals. In order to gain deeper physical insights into these phenomena, the band diagram of graphene nanohole plamsonic crystals has been investigated and optimized. We found that a graphene plasmonic crystal with nanohole arrays belonging to the C_{6v} symmetry group possesses gapless Dirac cones, which can be gapped out by introducing extra nanoholes such that the symmetry point group of the system is reduced from C_{6v} to C_{3v}. Taking advantage of this feature, we design a mirror symmetric domain-wall interface by placing together two optimized graphene plasmonic crystals so as to construct valley-polarized topological interface modes inside the opened bandgap. Our computational analysis shows that the valley-Hall topological domain-wall interface modes can be achieved at an extremely deep subwavelength scale, and do not rely on the application of external static magnetic fields. This work may pave a new way to develop highly-integrated and robust terahertz plasmonic waveguides at deep-subwavelength scale.
doi_str_mv 10.1109/JSTQE.2020.2982991
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2020_2982991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9049111</ieee_id><sourcerecordid>2407037091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-fa71819eac7680d19d1ea9340b06092fbc5c0a8b4f1d26811960355959a2d9a53</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A3pp4rk4s-22O0dDEDDEj4Aft83SbqGkdOsumPDvLYKe3knmfWaSh7FrhB4i0N3jdPY66HHg0OMkORGesA4KIcNYxPy0nSFNQ57A5zm78H4FADKW0GHTd11VZheO2ghmtrGVXZSZroKXSvu1rX1Q1oEOhk43S1Ob4EnXdmkr87cvs6Dvdn7TEh_62yy2ZW4u2VmhK2-ujtllbw-DWX8UTp6H4_79JMyiBDdhoVOUSEZnaSIhR8rRaIpimEMCxIt5JjLQch4XmPNEIlICkRAkSPOctIi67PZwt3H2a2v8Rq3s1tXtS8VjSCFKgbBt8UMrc9Z7ZwrVuHKt3U4hqL089StP7eWpo7wWujlApTHmHyCICRGjHy7dao4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407037091</pqid></control><display><type>article</type><title>Valley-Hall Topological Plasmons in a Graphene Nanohole Plasmonic Crystal Waveguide</title><source>IEEE Electronic Library (IEL)</source><creator>You, Jian Wei ; Lan, Zhihao ; Bao, Qiaoliang ; Panoiu, Nicolae C.</creator><creatorcontrib>You, Jian Wei ; Lan, Zhihao ; Bao, Qiaoliang ; Panoiu, Nicolae C.</creatorcontrib><description><![CDATA[We demonstrate that unidirectional and backscattering immune propagation of terahertz optical waves can be achieved in a topological valley-Hall waveguide made of graphene nanohole plasmonic crystals. In order to gain deeper physical insights into these phenomena, the band diagram of graphene nanohole plamsonic crystals has been investigated and optimized. We found that a graphene plasmonic crystal with nanohole arrays belonging to the <inline-formula><tex-math notation="LaTeX">C_{6v}</tex-math></inline-formula> symmetry group possesses gapless Dirac cones, which can be gapped out by introducing extra nanoholes such that the symmetry point group of the system is reduced from <inline-formula><tex-math notation="LaTeX">C_{6v}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">C_{3v}</tex-math></inline-formula>. Taking advantage of this feature, we design a mirror symmetric domain-wall interface by placing together two optimized graphene plasmonic crystals so as to construct valley-polarized topological interface modes inside the opened bandgap. Our computational analysis shows that the valley-Hall topological domain-wall interface modes can be achieved at an extremely deep subwavelength scale, and do not rely on the application of external static magnetic fields. This work may pave a new way to develop highly-integrated and robust terahertz plasmonic waveguides at deep-subwavelength scale.]]></description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2020.2982991</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Backscattering ; chirality-momentum locking ; Cones ; Crystals ; Domain walls ; domain-wall interface ; Graphene ; graphene plasmonic crystal waveguides ; Mirrors ; Optical waveguides ; Photonic band gap ; Photonics ; Plasmonics ; Plasmons ; Symmetry ; Topological plasmon mode propagation ; Topology ; valley-Hall topological waveguides ; Wave propagation ; Waveguides</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2020-11, Vol.26 (6), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-fa71819eac7680d19d1ea9340b06092fbc5c0a8b4f1d26811960355959a2d9a53</citedby><cites>FETCH-LOGICAL-c361t-fa71819eac7680d19d1ea9340b06092fbc5c0a8b4f1d26811960355959a2d9a53</cites><orcidid>0000-0001-5761-9507 ; 0000-0002-1322-5925 ; 0000-0001-5666-2116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9049111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9049111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>You, Jian Wei</creatorcontrib><creatorcontrib>Lan, Zhihao</creatorcontrib><creatorcontrib>Bao, Qiaoliang</creatorcontrib><creatorcontrib>Panoiu, Nicolae C.</creatorcontrib><title>Valley-Hall Topological Plasmons in a Graphene Nanohole Plasmonic Crystal Waveguide</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description><![CDATA[We demonstrate that unidirectional and backscattering immune propagation of terahertz optical waves can be achieved in a topological valley-Hall waveguide made of graphene nanohole plasmonic crystals. In order to gain deeper physical insights into these phenomena, the band diagram of graphene nanohole plamsonic crystals has been investigated and optimized. We found that a graphene plasmonic crystal with nanohole arrays belonging to the <inline-formula><tex-math notation="LaTeX">C_{6v}</tex-math></inline-formula> symmetry group possesses gapless Dirac cones, which can be gapped out by introducing extra nanoholes such that the symmetry point group of the system is reduced from <inline-formula><tex-math notation="LaTeX">C_{6v}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">C_{3v}</tex-math></inline-formula>. Taking advantage of this feature, we design a mirror symmetric domain-wall interface by placing together two optimized graphene plasmonic crystals so as to construct valley-polarized topological interface modes inside the opened bandgap. Our computational analysis shows that the valley-Hall topological domain-wall interface modes can be achieved at an extremely deep subwavelength scale, and do not rely on the application of external static magnetic fields. This work may pave a new way to develop highly-integrated and robust terahertz plasmonic waveguides at deep-subwavelength scale.]]></description><subject>Backscattering</subject><subject>chirality-momentum locking</subject><subject>Cones</subject><subject>Crystals</subject><subject>Domain walls</subject><subject>domain-wall interface</subject><subject>Graphene</subject><subject>graphene plasmonic crystal waveguides</subject><subject>Mirrors</subject><subject>Optical waveguides</subject><subject>Photonic band gap</subject><subject>Photonics</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Symmetry</subject><subject>Topological plasmon mode propagation</subject><subject>Topology</subject><subject>valley-Hall topological waveguides</subject><subject>Wave propagation</subject><subject>Waveguides</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9A3pp4rk4s-22O0dDEDDEj4Aft83SbqGkdOsumPDvLYKe3knmfWaSh7FrhB4i0N3jdPY66HHg0OMkORGesA4KIcNYxPy0nSFNQ57A5zm78H4FADKW0GHTd11VZheO2ghmtrGVXZSZroKXSvu1rX1Q1oEOhk43S1Ob4EnXdmkr87cvs6Dvdn7TEh_62yy2ZW4u2VmhK2-ujtllbw-DWX8UTp6H4_79JMyiBDdhoVOUSEZnaSIhR8rRaIpimEMCxIt5JjLQch4XmPNEIlICkRAkSPOctIi67PZwt3H2a2v8Rq3s1tXtS8VjSCFKgbBt8UMrc9Z7ZwrVuHKt3U4hqL089StP7eWpo7wWujlApTHmHyCICRGjHy7dao4</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>You, Jian Wei</creator><creator>Lan, Zhihao</creator><creator>Bao, Qiaoliang</creator><creator>Panoiu, Nicolae C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5761-9507</orcidid><orcidid>https://orcid.org/0000-0002-1322-5925</orcidid><orcidid>https://orcid.org/0000-0001-5666-2116</orcidid></search><sort><creationdate>20201101</creationdate><title>Valley-Hall Topological Plasmons in a Graphene Nanohole Plasmonic Crystal Waveguide</title><author>You, Jian Wei ; Lan, Zhihao ; Bao, Qiaoliang ; Panoiu, Nicolae C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-fa71819eac7680d19d1ea9340b06092fbc5c0a8b4f1d26811960355959a2d9a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Backscattering</topic><topic>chirality-momentum locking</topic><topic>Cones</topic><topic>Crystals</topic><topic>Domain walls</topic><topic>domain-wall interface</topic><topic>Graphene</topic><topic>graphene plasmonic crystal waveguides</topic><topic>Mirrors</topic><topic>Optical waveguides</topic><topic>Photonic band gap</topic><topic>Photonics</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Symmetry</topic><topic>Topological plasmon mode propagation</topic><topic>Topology</topic><topic>valley-Hall topological waveguides</topic><topic>Wave propagation</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Jian Wei</creatorcontrib><creatorcontrib>Lan, Zhihao</creatorcontrib><creatorcontrib>Bao, Qiaoliang</creatorcontrib><creatorcontrib>Panoiu, Nicolae C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>You, Jian Wei</au><au>Lan, Zhihao</au><au>Bao, Qiaoliang</au><au>Panoiu, Nicolae C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valley-Hall Topological Plasmons in a Graphene Nanohole Plasmonic Crystal Waveguide</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>26</volume><issue>6</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract><![CDATA[We demonstrate that unidirectional and backscattering immune propagation of terahertz optical waves can be achieved in a topological valley-Hall waveguide made of graphene nanohole plasmonic crystals. In order to gain deeper physical insights into these phenomena, the band diagram of graphene nanohole plamsonic crystals has been investigated and optimized. We found that a graphene plasmonic crystal with nanohole arrays belonging to the <inline-formula><tex-math notation="LaTeX">C_{6v}</tex-math></inline-formula> symmetry group possesses gapless Dirac cones, which can be gapped out by introducing extra nanoholes such that the symmetry point group of the system is reduced from <inline-formula><tex-math notation="LaTeX">C_{6v}</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">C_{3v}</tex-math></inline-formula>. Taking advantage of this feature, we design a mirror symmetric domain-wall interface by placing together two optimized graphene plasmonic crystals so as to construct valley-polarized topological interface modes inside the opened bandgap. Our computational analysis shows that the valley-Hall topological domain-wall interface modes can be achieved at an extremely deep subwavelength scale, and do not rely on the application of external static magnetic fields. This work may pave a new way to develop highly-integrated and robust terahertz plasmonic waveguides at deep-subwavelength scale.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2020.2982991</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5761-9507</orcidid><orcidid>https://orcid.org/0000-0002-1322-5925</orcidid><orcidid>https://orcid.org/0000-0001-5666-2116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2020-11, Vol.26 (6), p.1-8
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_JSTQE_2020_2982991
source IEEE Electronic Library (IEL)
subjects Backscattering
chirality-momentum locking
Cones
Crystals
Domain walls
domain-wall interface
Graphene
graphene plasmonic crystal waveguides
Mirrors
Optical waveguides
Photonic band gap
Photonics
Plasmonics
Plasmons
Symmetry
Topological plasmon mode propagation
Topology
valley-Hall topological waveguides
Wave propagation
Waveguides
title Valley-Hall Topological Plasmons in a Graphene Nanohole Plasmonic Crystal Waveguide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valley-Hall%20Topological%20Plasmons%20in%20a%20Graphene%20Nanohole%20Plasmonic%20Crystal%20Waveguide&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=You,%20Jian%20Wei&rft.date=2020-11-01&rft.volume=26&rft.issue=6&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2020.2982991&rft_dat=%3Cproquest_RIE%3E2407037091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407037091&rft_id=info:pmid/&rft_ieee_id=9049111&rfr_iscdi=true