Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks
We introduce an electro-optic hardware platform for nonlinear activation functions in optical neural networks. The optical-to-optical nonlinearity operates by converting a small portion of the input optical signal into an analog electric signal, which is used to intensity -modulate the original opti...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2020-01, Vol.26 (1), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 26 |
creator | Williamson, Ian A. D. Hughes, Tyler W. Minkov, Momchil Bartlett, Ben Pai, Sunil Fan, Shanhui |
description | We introduce an electro-optic hardware platform for nonlinear activation functions in optical neural networks. The optical-to-optical nonlinearity operates by converting a small portion of the input optical signal into an analog electric signal, which is used to intensity -modulate the original optical signal with no reduction in processing speed. Our scheme allows for complete nonlinear on-off contrast in transmission at relatively low optical power thresholds and eliminates the requirement of having additional optical sources between each of the layers of the network Moreover, the activation function is reconfigurable via electrical bias, allowing it to be programmed or trained to synthesize a variety of nonlinear responses. Using numerical simulations, we demonstrate that this activation function significantly improves the expressiveness of optical neural networks, allowing them to perform well on two benchmark machine learning tasks: learning a multi-input exclusive-OR (XOR) logic function and classification of images of handwritten numbers from the MNIST dataset. The addition of the nonlinear activation function improves test accuracy on the MNIST task from 85% to 94%. |
doi_str_mv | 10.1109/JSTQE.2019.2930455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2019_2930455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8769881</ieee_id><sourcerecordid>2270193890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-bb9b2be69830d5ee5fff70b4ded0badca8a90ca220deb426e5485014d23d78603</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCJxDll7diNc6yq8qeqFVAEN8t2NigljYudgHh7krbitHOY2Z39CLmkMKIUspvHl9XTbMSAZiOWJcCFOCIDKoSMueDsuNOQpjEbw_spOQthDQCSSxiQt2fcevfh9WajTYXRrELbeBcvt01po4Wrq7JG7aOJbcpv3ZSujm7b2vYiRIXz0c6oq2iBrd-N5sf5z3BOTgpdBbw4zCF5vZ2tpvfxfHn3MJ3MY9sVa2JjMsMMjjOZQC4QRVEUKRieYw5G51ZLnYHVjEGOhrMxCi4FUJ6zJE_lGJIhud7v7b74ajE0au1aX3cnFWNpxyORWe9ie5f1LgSPhdr6cqP9r6KgeoBqB1D1ANUBYBe62odKRPwPyLQrK2nyB-rIbko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270193890</pqid></control><display><type>article</type><title>Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Williamson, Ian A. D. ; Hughes, Tyler W. ; Minkov, Momchil ; Bartlett, Ben ; Pai, Sunil ; Fan, Shanhui</creator><creatorcontrib>Williamson, Ian A. D. ; Hughes, Tyler W. ; Minkov, Momchil ; Bartlett, Ben ; Pai, Sunil ; Fan, Shanhui</creatorcontrib><description>We introduce an electro-optic hardware platform for nonlinear activation functions in optical neural networks. The optical-to-optical nonlinearity operates by converting a small portion of the input optical signal into an analog electric signal, which is used to intensity -modulate the original optical signal with no reduction in processing speed. Our scheme allows for complete nonlinear on-off contrast in transmission at relatively low optical power thresholds and eliminates the requirement of having additional optical sources between each of the layers of the network Moreover, the activation function is reconfigurable via electrical bias, allowing it to be programmed or trained to synthesize a variety of nonlinear responses. Using numerical simulations, we demonstrate that this activation function significantly improves the expressiveness of optical neural networks, allowing them to perform well on two benchmark machine learning tasks: learning a multi-input exclusive-OR (XOR) logic function and classification of images of handwritten numbers from the MNIST dataset. The addition of the nonlinear activation function improves test accuracy on the MNIST task from 85% to 94%.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2019.2930455</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activation ; Computer simulation ; electro-optic modulators ; feedforward neural networks ; Handwriting ; Image classification ; intensity modulation ; Machine learning ; Neural networks ; neuromorphic computing ; Nonlinear optics ; Nonlinearity ; Optical communication ; Optical computing ; Optical fiber networks ; Optical imaging ; Optical interferometry ; Optical modulation ; Optical neural networks ; Optical signal processing ; Optics ; phase modulation ; photodetectors ; Signal processing</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2020-01, Vol.26 (1), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-bb9b2be69830d5ee5fff70b4ded0badca8a90ca220deb426e5485014d23d78603</citedby><cites>FETCH-LOGICAL-c454t-bb9b2be69830d5ee5fff70b4ded0badca8a90ca220deb426e5485014d23d78603</cites><orcidid>0000-0003-1332-9369 ; 0000-0002-6699-1973 ; 0000-0003-0665-8412 ; 0000-0002-1799-799X ; 0000-0001-7989-0891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8769881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8769881$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Williamson, Ian A. D.</creatorcontrib><creatorcontrib>Hughes, Tyler W.</creatorcontrib><creatorcontrib>Minkov, Momchil</creatorcontrib><creatorcontrib>Bartlett, Ben</creatorcontrib><creatorcontrib>Pai, Sunil</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><title>Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>We introduce an electro-optic hardware platform for nonlinear activation functions in optical neural networks. The optical-to-optical nonlinearity operates by converting a small portion of the input optical signal into an analog electric signal, which is used to intensity -modulate the original optical signal with no reduction in processing speed. Our scheme allows for complete nonlinear on-off contrast in transmission at relatively low optical power thresholds and eliminates the requirement of having additional optical sources between each of the layers of the network Moreover, the activation function is reconfigurable via electrical bias, allowing it to be programmed or trained to synthesize a variety of nonlinear responses. Using numerical simulations, we demonstrate that this activation function significantly improves the expressiveness of optical neural networks, allowing them to perform well on two benchmark machine learning tasks: learning a multi-input exclusive-OR (XOR) logic function and classification of images of handwritten numbers from the MNIST dataset. The addition of the nonlinear activation function improves test accuracy on the MNIST task from 85% to 94%.</description><subject>Activation</subject><subject>Computer simulation</subject><subject>electro-optic modulators</subject><subject>feedforward neural networks</subject><subject>Handwriting</subject><subject>Image classification</subject><subject>intensity modulation</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>neuromorphic computing</subject><subject>Nonlinear optics</subject><subject>Nonlinearity</subject><subject>Optical communication</subject><subject>Optical computing</subject><subject>Optical fiber networks</subject><subject>Optical imaging</subject><subject>Optical interferometry</subject><subject>Optical modulation</subject><subject>Optical neural networks</subject><subject>Optical signal processing</subject><subject>Optics</subject><subject>phase modulation</subject><subject>photodetectors</subject><subject>Signal processing</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCJxDll7diNc6yq8qeqFVAEN8t2NigljYudgHh7krbitHOY2Z39CLmkMKIUspvHl9XTbMSAZiOWJcCFOCIDKoSMueDsuNOQpjEbw_spOQthDQCSSxiQt2fcevfh9WajTYXRrELbeBcvt01po4Wrq7JG7aOJbcpv3ZSujm7b2vYiRIXz0c6oq2iBrd-N5sf5z3BOTgpdBbw4zCF5vZ2tpvfxfHn3MJ3MY9sVa2JjMsMMjjOZQC4QRVEUKRieYw5G51ZLnYHVjEGOhrMxCi4FUJ6zJE_lGJIhud7v7b74ajE0au1aX3cnFWNpxyORWe9ie5f1LgSPhdr6cqP9r6KgeoBqB1D1ANUBYBe62odKRPwPyLQrK2nyB-rIbko</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Williamson, Ian A. D.</creator><creator>Hughes, Tyler W.</creator><creator>Minkov, Momchil</creator><creator>Bartlett, Ben</creator><creator>Pai, Sunil</creator><creator>Fan, Shanhui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1332-9369</orcidid><orcidid>https://orcid.org/0000-0002-6699-1973</orcidid><orcidid>https://orcid.org/0000-0003-0665-8412</orcidid><orcidid>https://orcid.org/0000-0002-1799-799X</orcidid><orcidid>https://orcid.org/0000-0001-7989-0891</orcidid></search><sort><creationdate>202001</creationdate><title>Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks</title><author>Williamson, Ian A. D. ; Hughes, Tyler W. ; Minkov, Momchil ; Bartlett, Ben ; Pai, Sunil ; Fan, Shanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-bb9b2be69830d5ee5fff70b4ded0badca8a90ca220deb426e5485014d23d78603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activation</topic><topic>Computer simulation</topic><topic>electro-optic modulators</topic><topic>feedforward neural networks</topic><topic>Handwriting</topic><topic>Image classification</topic><topic>intensity modulation</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>neuromorphic computing</topic><topic>Nonlinear optics</topic><topic>Nonlinearity</topic><topic>Optical communication</topic><topic>Optical computing</topic><topic>Optical fiber networks</topic><topic>Optical imaging</topic><topic>Optical interferometry</topic><topic>Optical modulation</topic><topic>Optical neural networks</topic><topic>Optical signal processing</topic><topic>Optics</topic><topic>phase modulation</topic><topic>photodetectors</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williamson, Ian A. D.</creatorcontrib><creatorcontrib>Hughes, Tyler W.</creatorcontrib><creatorcontrib>Minkov, Momchil</creatorcontrib><creatorcontrib>Bartlett, Ben</creatorcontrib><creatorcontrib>Pai, Sunil</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Williamson, Ian A. D.</au><au>Hughes, Tyler W.</au><au>Minkov, Momchil</au><au>Bartlett, Ben</au><au>Pai, Sunil</au><au>Fan, Shanhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2020-01</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>We introduce an electro-optic hardware platform for nonlinear activation functions in optical neural networks. The optical-to-optical nonlinearity operates by converting a small portion of the input optical signal into an analog electric signal, which is used to intensity -modulate the original optical signal with no reduction in processing speed. Our scheme allows for complete nonlinear on-off contrast in transmission at relatively low optical power thresholds and eliminates the requirement of having additional optical sources between each of the layers of the network Moreover, the activation function is reconfigurable via electrical bias, allowing it to be programmed or trained to synthesize a variety of nonlinear responses. Using numerical simulations, we demonstrate that this activation function significantly improves the expressiveness of optical neural networks, allowing them to perform well on two benchmark machine learning tasks: learning a multi-input exclusive-OR (XOR) logic function and classification of images of handwritten numbers from the MNIST dataset. The addition of the nonlinear activation function improves test accuracy on the MNIST task from 85% to 94%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2019.2930455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1332-9369</orcidid><orcidid>https://orcid.org/0000-0002-6699-1973</orcidid><orcidid>https://orcid.org/0000-0003-0665-8412</orcidid><orcidid>https://orcid.org/0000-0002-1799-799X</orcidid><orcidid>https://orcid.org/0000-0001-7989-0891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2020-01, Vol.26 (1), p.1-12 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTQE_2019_2930455 |
source | IEEE Electronic Library (IEL) |
subjects | Activation Computer simulation electro-optic modulators feedforward neural networks Handwriting Image classification intensity modulation Machine learning Neural networks neuromorphic computing Nonlinear optics Nonlinearity Optical communication Optical computing Optical fiber networks Optical imaging Optical interferometry Optical modulation Optical neural networks Optical signal processing Optics phase modulation photodetectors Signal processing |
title | Reprogrammable Electro-Optic Nonlinear Activation Functions for Optical Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprogrammable%20Electro-Optic%20Nonlinear%20Activation%20Functions%20for%20Optical%20Neural%20Networks&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Williamson,%20Ian%20A.%20D.&rft.date=2020-01&rft.volume=26&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2019.2930455&rft_dat=%3Cproquest_RIE%3E2270193890%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270193890&rft_id=info:pmid/&rft_ieee_id=8769881&rfr_iscdi=true |