Cramer–Rao Bound for Frequency Estimation of Spectral Interference and Its Shot Noise-Limited Behavior

Interference frequency estimation is essential in spectral-domain interferometric sensing and imaging, and its performance determines system sensitivity. To date, an objective and practical criterion is still absent for the proper evaluation of fundamental sensitivity limit in a given system. Here,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2017-03, Vol.23 (2), p.410-416
Hauptverfasser: Li, Chengshuai, Zhu, Yizheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 2
container_start_page 410
container_title IEEE journal of selected topics in quantum electronics
container_volume 23
creator Li, Chengshuai
Zhu, Yizheng
description Interference frequency estimation is essential in spectral-domain interferometric sensing and imaging, and its performance determines system sensitivity. To date, an objective and practical criterion is still absent for the proper evaluation of fundamental sensitivity limit in a given system. Here, we report the derivation of Cramer-Rao bound (CRB) for unbiased estimators of spectral interference frequency, which imposes a theoretical limit on measurement sensitivity. Results based on a shot noise-limited model are presented. A more complete model, including dark and read noises, is also discussed and its approximate CRB is obtained. Poisson statistics were used in both cases. Asymptotic behaviors and simplified forms of CRB are studied for fringe visibility approaching 0 or 1. Further, we show that the current Fourier transform-based estimation algorithm achieves CRB only for low visibility, but is inferior by as much as √2 times for high visibility. This performance gap may potentially permit a sensitivity gain if better algorithms can be devised. Finally, we introduce a practical means to accurately estimate CRB from experimentally acquired spectral data. The results are verified in both simulation and experiments. Although spectral interference is discussed here, the same derivation can be applied to spatial or temporal interference as well, provided they can be similarly modelled.
doi_str_mv 10.1109/JSTQE.2016.2604798
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2016_2604798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7556967</ieee_id><sourcerecordid>10_1109_JSTQE_2016_2604798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-aab3e5a2926a29d5cd08c7ae4dfac28ee17a94e79cea7f48a09a5b73e8d2dd4d3</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYi-gF76AovdbrvtHoUAYohGwcTbZmhnwxrYYltMuPkOvqFP4iLEy8wk_3yTyUfIdcp6acqK24fZ_HnY4yzNezxnQhX6hHRSKXUipOCn7cyUStro7ZxchPDOGNNCsw5ZDjys0f98fb-Ao323bSytnKcjjx9bbMyODkOs1xBr11BX0dkGTfSwopMmoq_QtztIoaUmMdDZ0kX66OqAybRe1xEt7eMSPmvnL8lZBauAV8feJa-j4Xxwn0yfxpPB3TQxWaZiArDIUAIveN4WK41l2ihAYSswXCOmCgqBqjAIqhIaWAFyoTLUllsrbNYl_HDXeBeCx6rc-PZ_vytTVu5dlX-uyr2r8uiqhW4OUI2I_4CSMi9ylf0CTOtpeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cramer–Rao Bound for Frequency Estimation of Spectral Interference and Its Shot Noise-Limited Behavior</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Chengshuai ; Zhu, Yizheng</creator><creatorcontrib>Li, Chengshuai ; Zhu, Yizheng</creatorcontrib><description>Interference frequency estimation is essential in spectral-domain interferometric sensing and imaging, and its performance determines system sensitivity. To date, an objective and practical criterion is still absent for the proper evaluation of fundamental sensitivity limit in a given system. Here, we report the derivation of Cramer-Rao bound (CRB) for unbiased estimators of spectral interference frequency, which imposes a theoretical limit on measurement sensitivity. Results based on a shot noise-limited model are presented. A more complete model, including dark and read noises, is also discussed and its approximate CRB is obtained. Poisson statistics were used in both cases. Asymptotic behaviors and simplified forms of CRB are studied for fringe visibility approaching 0 or 1. Further, we show that the current Fourier transform-based estimation algorithm achieves CRB only for low visibility, but is inferior by as much as √2 times for high visibility. This performance gap may potentially permit a sensitivity gain if better algorithms can be devised. Finally, we introduce a practical means to accurately estimate CRB from experimentally acquired spectral data. The results are verified in both simulation and experiments. Although spectral interference is discussed here, the same derivation can be applied to spatial or temporal interference as well, provided they can be similarly modelled.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2016.2604798</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cramer–Rao bounds ; Dark current ; Frequency estimation ; Interference ; Optical fiber sensors ; Optical interferometry ; Sensitivity ; sensitivity analysis ; signal processing ; Signal processing algorithms</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2017-03, Vol.23 (2), p.410-416</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-aab3e5a2926a29d5cd08c7ae4dfac28ee17a94e79cea7f48a09a5b73e8d2dd4d3</citedby><cites>FETCH-LOGICAL-c337t-aab3e5a2926a29d5cd08c7ae4dfac28ee17a94e79cea7f48a09a5b73e8d2dd4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7556967$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7556967$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Chengshuai</creatorcontrib><creatorcontrib>Zhu, Yizheng</creatorcontrib><title>Cramer–Rao Bound for Frequency Estimation of Spectral Interference and Its Shot Noise-Limited Behavior</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Interference frequency estimation is essential in spectral-domain interferometric sensing and imaging, and its performance determines system sensitivity. To date, an objective and practical criterion is still absent for the proper evaluation of fundamental sensitivity limit in a given system. Here, we report the derivation of Cramer-Rao bound (CRB) for unbiased estimators of spectral interference frequency, which imposes a theoretical limit on measurement sensitivity. Results based on a shot noise-limited model are presented. A more complete model, including dark and read noises, is also discussed and its approximate CRB is obtained. Poisson statistics were used in both cases. Asymptotic behaviors and simplified forms of CRB are studied for fringe visibility approaching 0 or 1. Further, we show that the current Fourier transform-based estimation algorithm achieves CRB only for low visibility, but is inferior by as much as √2 times for high visibility. This performance gap may potentially permit a sensitivity gain if better algorithms can be devised. Finally, we introduce a practical means to accurately estimate CRB from experimentally acquired spectral data. The results are verified in both simulation and experiments. Although spectral interference is discussed here, the same derivation can be applied to spatial or temporal interference as well, provided they can be similarly modelled.</description><subject>Cramer–Rao bounds</subject><subject>Dark current</subject><subject>Frequency estimation</subject><subject>Interference</subject><subject>Optical fiber sensors</subject><subject>Optical interferometry</subject><subject>Sensitivity</subject><subject>sensitivity analysis</subject><subject>signal processing</subject><subject>Signal processing algorithms</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEQhhujiYi-gF76AovdbrvtHoUAYohGwcTbZmhnwxrYYltMuPkOvqFP4iLEy8wk_3yTyUfIdcp6acqK24fZ_HnY4yzNezxnQhX6hHRSKXUipOCn7cyUStro7ZxchPDOGNNCsw5ZDjys0f98fb-Ao323bSytnKcjjx9bbMyODkOs1xBr11BX0dkGTfSwopMmoq_QtztIoaUmMdDZ0kX66OqAybRe1xEt7eMSPmvnL8lZBauAV8feJa-j4Xxwn0yfxpPB3TQxWaZiArDIUAIveN4WK41l2ihAYSswXCOmCgqBqjAIqhIaWAFyoTLUllsrbNYl_HDXeBeCx6rc-PZ_vytTVu5dlX-uyr2r8uiqhW4OUI2I_4CSMi9ylf0CTOtpeA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Li, Chengshuai</creator><creator>Zhu, Yizheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Cramer–Rao Bound for Frequency Estimation of Spectral Interference and Its Shot Noise-Limited Behavior</title><author>Li, Chengshuai ; Zhu, Yizheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-aab3e5a2926a29d5cd08c7ae4dfac28ee17a94e79cea7f48a09a5b73e8d2dd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Cramer–Rao bounds</topic><topic>Dark current</topic><topic>Frequency estimation</topic><topic>Interference</topic><topic>Optical fiber sensors</topic><topic>Optical interferometry</topic><topic>Sensitivity</topic><topic>sensitivity analysis</topic><topic>signal processing</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chengshuai</creatorcontrib><creatorcontrib>Zhu, Yizheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Chengshuai</au><au>Zhu, Yizheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cramer–Rao Bound for Frequency Estimation of Spectral Interference and Its Shot Noise-Limited Behavior</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>23</volume><issue>2</issue><spage>410</spage><epage>416</epage><pages>410-416</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Interference frequency estimation is essential in spectral-domain interferometric sensing and imaging, and its performance determines system sensitivity. To date, an objective and practical criterion is still absent for the proper evaluation of fundamental sensitivity limit in a given system. Here, we report the derivation of Cramer-Rao bound (CRB) for unbiased estimators of spectral interference frequency, which imposes a theoretical limit on measurement sensitivity. Results based on a shot noise-limited model are presented. A more complete model, including dark and read noises, is also discussed and its approximate CRB is obtained. Poisson statistics were used in both cases. Asymptotic behaviors and simplified forms of CRB are studied for fringe visibility approaching 0 or 1. Further, we show that the current Fourier transform-based estimation algorithm achieves CRB only for low visibility, but is inferior by as much as √2 times for high visibility. This performance gap may potentially permit a sensitivity gain if better algorithms can be devised. Finally, we introduce a practical means to accurately estimate CRB from experimentally acquired spectral data. The results are verified in both simulation and experiments. Although spectral interference is discussed here, the same derivation can be applied to spatial or temporal interference as well, provided they can be similarly modelled.</abstract><pub>IEEE</pub><doi>10.1109/JSTQE.2016.2604798</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2017-03, Vol.23 (2), p.410-416
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_JSTQE_2016_2604798
source IEEE Electronic Library (IEL)
subjects Cramer–Rao bounds
Dark current
Frequency estimation
Interference
Optical fiber sensors
Optical interferometry
Sensitivity
sensitivity analysis
signal processing
Signal processing algorithms
title Cramer–Rao Bound for Frequency Estimation of Spectral Interference and Its Shot Noise-Limited Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cramer%E2%80%93Rao%20Bound%20for%20Frequency%20Estimation%20of%20Spectral%20Interference%20and%20Its%20Shot%20Noise-Limited%20Behavior&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Li,%20Chengshuai&rft.date=2017-03-01&rft.volume=23&rft.issue=2&rft.spage=410&rft.epage=416&rft.pages=410-416&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2016.2604798&rft_dat=%3Ccrossref_RIE%3E10_1109_JSTQE_2016_2604798%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7556967&rfr_iscdi=true