Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates
III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2016-11, Vol.22 (6), p.50-56 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 6 |
container_start_page | 50 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 22 |
creator | Mingchu Tang Siming Chen Jiang Wu Qi Jiang Kennedy, Ken Jurczak, Pamela Mengya Liao Beanland, Richard Seeds, Alwyn Huiyun Liu |
description | III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser. |
doi_str_mv | 10.1109/JSTQE.2016.2551941 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2016_2551941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7451187</ieee_id><sourcerecordid>10_1109_JSTQE_2016_2551941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</originalsourceid><addsrcrecordid>eNo9kEtOwzAYhC0EEqVwAdj4Akn9J34ky6ovioqqqkViFzmOI4ySuLJdoXI2zsCZSKFiNbOYbxYfQvdAYgCSj562u80sTgjwOGEMcgoXaACMZRFlNLnsOxEiSjh5vUY33r8TQjKakQEK630wrfmUwdjOY1vjqa61CnhumqAdXsmjdh7X1mGI0-j7q8XLbuxHCzn2eHOQXTi00dSGfuhPw2fb2caEN6Nk0xzxwtmPDtsObw3eHkofnAza36KrWjZe351ziF7ms93kMVqtF8vJeBWplJMQUVAgGWeV0iIpa664FJwKqXVWVSAkJ6VSVV4lkKeCZqzMoSQiz6mmqrcC6RAlf7_KWe-drou9M610xwJIcfJW_HorTt6Ks7ceeviDjNb6HxCUAWQi_QE4dGs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</title><source>IEEE Electronic Library (IEL)</source><creator>Mingchu Tang ; Siming Chen ; Jiang Wu ; Qi Jiang ; Kennedy, Ken ; Jurczak, Pamela ; Mengya Liao ; Beanland, Richard ; Seeds, Alwyn ; Huiyun Liu</creator><creatorcontrib>Mingchu Tang ; Siming Chen ; Jiang Wu ; Qi Jiang ; Kennedy, Ken ; Jurczak, Pamela ; Mengya Liao ; Beanland, Richard ; Seeds, Alwyn ; Huiyun Liu</creatorcontrib><description>III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2016.2551941</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buffer layers ; Gallium arsenide ; Indium ; Molecular beam epitaxy ; Optimization ; quantum dots ; semiconductor lasers ; Silicon ; silicon photonics ; Substrates ; Temperature measurement</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2016-11, Vol.22 (6), p.50-56</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</citedby><cites>FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</cites><orcidid>0000-0001-6626-3389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7451187$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Mingchu Tang</creatorcontrib><creatorcontrib>Siming Chen</creatorcontrib><creatorcontrib>Jiang Wu</creatorcontrib><creatorcontrib>Qi Jiang</creatorcontrib><creatorcontrib>Kennedy, Ken</creatorcontrib><creatorcontrib>Jurczak, Pamela</creatorcontrib><creatorcontrib>Mengya Liao</creatorcontrib><creatorcontrib>Beanland, Richard</creatorcontrib><creatorcontrib>Seeds, Alwyn</creatorcontrib><creatorcontrib>Huiyun Liu</creatorcontrib><title>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser.</description><subject>Buffer layers</subject><subject>Gallium arsenide</subject><subject>Indium</subject><subject>Molecular beam epitaxy</subject><subject>Optimization</subject><subject>quantum dots</subject><subject>semiconductor lasers</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Substrates</subject><subject>Temperature measurement</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtOwzAYhC0EEqVwAdj4Akn9J34ky6ovioqqqkViFzmOI4ySuLJdoXI2zsCZSKFiNbOYbxYfQvdAYgCSj562u80sTgjwOGEMcgoXaACMZRFlNLnsOxEiSjh5vUY33r8TQjKakQEK630wrfmUwdjOY1vjqa61CnhumqAdXsmjdh7X1mGI0-j7q8XLbuxHCzn2eHOQXTi00dSGfuhPw2fb2caEN6Nk0xzxwtmPDtsObw3eHkofnAza36KrWjZe351ziF7ms93kMVqtF8vJeBWplJMQUVAgGWeV0iIpa664FJwKqXVWVSAkJ6VSVV4lkKeCZqzMoSQiz6mmqrcC6RAlf7_KWe-drou9M610xwJIcfJW_HorTt6Ks7ceeviDjNb6HxCUAWQi_QE4dGs0</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Mingchu Tang</creator><creator>Siming Chen</creator><creator>Jiang Wu</creator><creator>Qi Jiang</creator><creator>Kennedy, Ken</creator><creator>Jurczak, Pamela</creator><creator>Mengya Liao</creator><creator>Beanland, Richard</creator><creator>Seeds, Alwyn</creator><creator>Huiyun Liu</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6626-3389</orcidid></search><sort><creationdate>201611</creationdate><title>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</title><author>Mingchu Tang ; Siming Chen ; Jiang Wu ; Qi Jiang ; Kennedy, Ken ; Jurczak, Pamela ; Mengya Liao ; Beanland, Richard ; Seeds, Alwyn ; Huiyun Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Buffer layers</topic><topic>Gallium arsenide</topic><topic>Indium</topic><topic>Molecular beam epitaxy</topic><topic>Optimization</topic><topic>quantum dots</topic><topic>semiconductor lasers</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Substrates</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingchu Tang</creatorcontrib><creatorcontrib>Siming Chen</creatorcontrib><creatorcontrib>Jiang Wu</creatorcontrib><creatorcontrib>Qi Jiang</creatorcontrib><creatorcontrib>Kennedy, Ken</creatorcontrib><creatorcontrib>Jurczak, Pamela</creatorcontrib><creatorcontrib>Mengya Liao</creatorcontrib><creatorcontrib>Beanland, Richard</creatorcontrib><creatorcontrib>Seeds, Alwyn</creatorcontrib><creatorcontrib>Huiyun Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mingchu Tang</au><au>Siming Chen</au><au>Jiang Wu</au><au>Qi Jiang</au><au>Kennedy, Ken</au><au>Jurczak, Pamela</au><au>Mengya Liao</au><au>Beanland, Richard</au><au>Seeds, Alwyn</au><au>Huiyun Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2016-11</date><risdate>2016</risdate><volume>22</volume><issue>6</issue><spage>50</spage><epage>56</epage><pages>50-56</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser.</abstract><pub>IEEE</pub><doi>10.1109/JSTQE.2016.2551941</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6626-3389</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2016-11, Vol.22 (6), p.50-56 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTQE_2016_2551941 |
source | IEEE Electronic Library (IEL) |
subjects | Buffer layers Gallium arsenide Indium Molecular beam epitaxy Optimization quantum dots semiconductor lasers Silicon silicon photonics Substrates Temperature measurement |
title | Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizations%20of%20Defect%20Filter%20Layers%20for%201.3-%CE%BCm%20InAs/GaAs%20Quantum-Dot%20Lasers%20Monolithically%20Grown%20on%20Si%20Substrates&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Mingchu%20Tang&rft.date=2016-11&rft.volume=22&rft.issue=6&rft.spage=50&rft.epage=56&rft.pages=50-56&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2016.2551941&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSTQE_2016_2551941%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7451187&rfr_iscdi=true |