Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates

III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2016-11, Vol.22 (6), p.50-56
Hauptverfasser: Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Kennedy, Ken, Jurczak, Pamela, Mengya Liao, Beanland, Richard, Seeds, Alwyn, Huiyun Liu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 6
container_start_page 50
container_title IEEE journal of selected topics in quantum electronics
container_volume 22
creator Mingchu Tang
Siming Chen
Jiang Wu
Qi Jiang
Kennedy, Ken
Jurczak, Pamela
Mengya Liao
Beanland, Richard
Seeds, Alwyn
Huiyun Liu
description III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser.
doi_str_mv 10.1109/JSTQE.2016.2551941
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2016_2551941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7451187</ieee_id><sourcerecordid>10_1109_JSTQE_2016_2551941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</originalsourceid><addsrcrecordid>eNo9kEtOwzAYhC0EEqVwAdj4Akn9J34ky6ovioqqqkViFzmOI4ySuLJdoXI2zsCZSKFiNbOYbxYfQvdAYgCSj562u80sTgjwOGEMcgoXaACMZRFlNLnsOxEiSjh5vUY33r8TQjKakQEK630wrfmUwdjOY1vjqa61CnhumqAdXsmjdh7X1mGI0-j7q8XLbuxHCzn2eHOQXTi00dSGfuhPw2fb2caEN6Nk0xzxwtmPDtsObw3eHkofnAza36KrWjZe351ziF7ms93kMVqtF8vJeBWplJMQUVAgGWeV0iIpa664FJwKqXVWVSAkJ6VSVV4lkKeCZqzMoSQiz6mmqrcC6RAlf7_KWe-drou9M610xwJIcfJW_HorTt6Ks7ceeviDjNb6HxCUAWQi_QE4dGs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</title><source>IEEE Electronic Library (IEL)</source><creator>Mingchu Tang ; Siming Chen ; Jiang Wu ; Qi Jiang ; Kennedy, Ken ; Jurczak, Pamela ; Mengya Liao ; Beanland, Richard ; Seeds, Alwyn ; Huiyun Liu</creator><creatorcontrib>Mingchu Tang ; Siming Chen ; Jiang Wu ; Qi Jiang ; Kennedy, Ken ; Jurczak, Pamela ; Mengya Liao ; Beanland, Richard ; Seeds, Alwyn ; Huiyun Liu</creatorcontrib><description>III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2016.2551941</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buffer layers ; Gallium arsenide ; Indium ; Molecular beam epitaxy ; Optimization ; quantum dots ; semiconductor lasers ; Silicon ; silicon photonics ; Substrates ; Temperature measurement</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2016-11, Vol.22 (6), p.50-56</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</citedby><cites>FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</cites><orcidid>0000-0001-6626-3389</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7451187$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Mingchu Tang</creatorcontrib><creatorcontrib>Siming Chen</creatorcontrib><creatorcontrib>Jiang Wu</creatorcontrib><creatorcontrib>Qi Jiang</creatorcontrib><creatorcontrib>Kennedy, Ken</creatorcontrib><creatorcontrib>Jurczak, Pamela</creatorcontrib><creatorcontrib>Mengya Liao</creatorcontrib><creatorcontrib>Beanland, Richard</creatorcontrib><creatorcontrib>Seeds, Alwyn</creatorcontrib><creatorcontrib>Huiyun Liu</creatorcontrib><title>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser.</description><subject>Buffer layers</subject><subject>Gallium arsenide</subject><subject>Indium</subject><subject>Molecular beam epitaxy</subject><subject>Optimization</subject><subject>quantum dots</subject><subject>semiconductor lasers</subject><subject>Silicon</subject><subject>silicon photonics</subject><subject>Substrates</subject><subject>Temperature measurement</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtOwzAYhC0EEqVwAdj4Akn9J34ky6ovioqqqkViFzmOI4ySuLJdoXI2zsCZSKFiNbOYbxYfQvdAYgCSj562u80sTgjwOGEMcgoXaACMZRFlNLnsOxEiSjh5vUY33r8TQjKakQEK630wrfmUwdjOY1vjqa61CnhumqAdXsmjdh7X1mGI0-j7q8XLbuxHCzn2eHOQXTi00dSGfuhPw2fb2caEN6Nk0xzxwtmPDtsObw3eHkofnAza36KrWjZe351ziF7ms93kMVqtF8vJeBWplJMQUVAgGWeV0iIpa664FJwKqXVWVSAkJ6VSVV4lkKeCZqzMoSQiz6mmqrcC6RAlf7_KWe-drou9M610xwJIcfJW_HorTt6Ks7ceeviDjNb6HxCUAWQi_QE4dGs0</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Mingchu Tang</creator><creator>Siming Chen</creator><creator>Jiang Wu</creator><creator>Qi Jiang</creator><creator>Kennedy, Ken</creator><creator>Jurczak, Pamela</creator><creator>Mengya Liao</creator><creator>Beanland, Richard</creator><creator>Seeds, Alwyn</creator><creator>Huiyun Liu</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6626-3389</orcidid></search><sort><creationdate>201611</creationdate><title>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</title><author>Mingchu Tang ; Siming Chen ; Jiang Wu ; Qi Jiang ; Kennedy, Ken ; Jurczak, Pamela ; Mengya Liao ; Beanland, Richard ; Seeds, Alwyn ; Huiyun Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-41c1a565dce72bf6c6a7647aee8dd17a60bccd9d21937485b91b07994e4c11013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Buffer layers</topic><topic>Gallium arsenide</topic><topic>Indium</topic><topic>Molecular beam epitaxy</topic><topic>Optimization</topic><topic>quantum dots</topic><topic>semiconductor lasers</topic><topic>Silicon</topic><topic>silicon photonics</topic><topic>Substrates</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingchu Tang</creatorcontrib><creatorcontrib>Siming Chen</creatorcontrib><creatorcontrib>Jiang Wu</creatorcontrib><creatorcontrib>Qi Jiang</creatorcontrib><creatorcontrib>Kennedy, Ken</creatorcontrib><creatorcontrib>Jurczak, Pamela</creatorcontrib><creatorcontrib>Mengya Liao</creatorcontrib><creatorcontrib>Beanland, Richard</creatorcontrib><creatorcontrib>Seeds, Alwyn</creatorcontrib><creatorcontrib>Huiyun Liu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mingchu Tang</au><au>Siming Chen</au><au>Jiang Wu</au><au>Qi Jiang</au><au>Kennedy, Ken</au><au>Jurczak, Pamela</au><au>Mengya Liao</au><au>Beanland, Richard</au><au>Seeds, Alwyn</au><au>Huiyun Liu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2016-11</date><risdate>2016</risdate><volume>22</volume><issue>6</issue><spage>50</spage><epage>56</epage><pages>50-56</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>III-V semiconductors monolithically grown on Si substrates are expected to be an ideal solution to integrate highly efficient light-emitting devices on a Si platform. However, the lattice mismatch between III-V and Si generates a high density of threading dislocations (TDs) at the interface between III-V and Si. Some of these TD will propagate into the III-V active region and lead to device degradation. By introducing defect filter layers (DFLs), the density of TDs propagating into the III-V layers can be significantly reduced. In this paper, we present an investigation on the development of InGaAs/GaAs strained-layer superlattices as DFLs for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on a Si substrate. We compare two broad-area InAs/GaAs quantum-dot lasers with non-optimized and optimized InGaAs/GaAs DFLs. The laser device with optimal DFLs has a lower room-temperature threshold current density of 99 A/cm 2 and higher maximum operation temperature of 88 °C, compared with 174 A/cm 2 and 68 °C for the reference laser.</abstract><pub>IEEE</pub><doi>10.1109/JSTQE.2016.2551941</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6626-3389</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2016-11, Vol.22 (6), p.50-56
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_JSTQE_2016_2551941
source IEEE Electronic Library (IEL)
subjects Buffer layers
Gallium arsenide
Indium
Molecular beam epitaxy
Optimization
quantum dots
semiconductor lasers
Silicon
silicon photonics
Substrates
Temperature measurement
title Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizations%20of%20Defect%20Filter%20Layers%20for%201.3-%CE%BCm%20InAs/GaAs%20Quantum-Dot%20Lasers%20Monolithically%20Grown%20on%20Si%20Substrates&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Mingchu%20Tang&rft.date=2016-11&rft.volume=22&rft.issue=6&rft.spage=50&rft.epage=56&rft.pages=50-56&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2016.2551941&rft_dat=%3Ccrossref_ieee_%3E10_1109_JSTQE_2016_2551941%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7451187&rfr_iscdi=true