Inside Quantum Repeaters

Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2015-05, Vol.21 (3), p.78-90
Hauptverfasser: Munro, William J., Azuma, Koji, Tamaki, Kiyoshi, Nemoto, Kae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 3
container_start_page 78
container_title IEEE journal of selected topics in quantum electronics
container_volume 21
creator Munro, William J.
Azuma, Koji
Tamaki, Kiyoshi
Nemoto, Kae
description Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations.
doi_str_mv 10.1109/JSTQE.2015.2392076
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2015_2392076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7010905</ieee_id><sourcerecordid>3623035261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUgIMoOKd30cvAc-tL-pI0RxlTJwOZTvAW0vyADrfWpD3439vZ4em9w_e9Bx8hNxRySkHdv7xv1oucAeU5KxQDKU7IhHJeZsiRnQ47SJkxAZ_n5CKlLQCUWMKEXC_3qXZ-tu7Nvut3szffetP5mC7JWTBfyV8d55R8PC428-ds9fq0nD-sMlsgdhmaqlDBAqKvgEvnkAbBqKHCoVFMGeqoUCVYF6x3rpAclKuqMnCFaGUopuRuvNvG5rv3qdPbpo_74aWmQjCJKEo2UGykbGxSij7oNtY7E380BX0ooP8K6EMBfSwwSLejVHvv_wUJAw68-AUZEFXi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662744682</pqid></control><display><type>article</type><title>Inside Quantum Repeaters</title><source>IEEE Electronic Library (IEL)</source><creator>Munro, William J. ; Azuma, Koji ; Tamaki, Kiyoshi ; Nemoto, Kae</creator><creatorcontrib>Munro, William J. ; Azuma, Koji ; Tamaki, Kiyoshi ; Nemoto, Kae</creatorcontrib><description>Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2015.2392076</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cavity resonators ; Photonics ; Protocols ; Quantum communication ; Quantum entanglement ; Quantum theory ; Repeaters ; Repeaters and Networks ; Superconductors ; Teleportation</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2015-05, Vol.21 (3), p.78-90</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</citedby><cites>FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7010905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7010905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Azuma, Koji</creatorcontrib><creatorcontrib>Tamaki, Kiyoshi</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><title>Inside Quantum Repeaters</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations.</description><subject>Cavity resonators</subject><subject>Photonics</subject><subject>Protocols</subject><subject>Quantum communication</subject><subject>Quantum entanglement</subject><subject>Quantum theory</subject><subject>Repeaters</subject><subject>Repeaters and Networks</subject><subject>Superconductors</subject><subject>Teleportation</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUgIMoOKd30cvAc-tL-pI0RxlTJwOZTvAW0vyADrfWpD3439vZ4em9w_e9Bx8hNxRySkHdv7xv1oucAeU5KxQDKU7IhHJeZsiRnQ47SJkxAZ_n5CKlLQCUWMKEXC_3qXZ-tu7Nvut3szffetP5mC7JWTBfyV8d55R8PC428-ds9fq0nD-sMlsgdhmaqlDBAqKvgEvnkAbBqKHCoVFMGeqoUCVYF6x3rpAclKuqMnCFaGUopuRuvNvG5rv3qdPbpo_74aWmQjCJKEo2UGykbGxSij7oNtY7E380BX0ooP8K6EMBfSwwSLejVHvv_wUJAw68-AUZEFXi</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Munro, William J.</creator><creator>Azuma, Koji</creator><creator>Tamaki, Kiyoshi</creator><creator>Nemoto, Kae</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201505</creationdate><title>Inside Quantum Repeaters</title><author>Munro, William J. ; Azuma, Koji ; Tamaki, Kiyoshi ; Nemoto, Kae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cavity resonators</topic><topic>Photonics</topic><topic>Protocols</topic><topic>Quantum communication</topic><topic>Quantum entanglement</topic><topic>Quantum theory</topic><topic>Repeaters</topic><topic>Repeaters and Networks</topic><topic>Superconductors</topic><topic>Teleportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Azuma, Koji</creatorcontrib><creatorcontrib>Tamaki, Kiyoshi</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munro, William J.</au><au>Azuma, Koji</au><au>Tamaki, Kiyoshi</au><au>Nemoto, Kae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inside Quantum Repeaters</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2015-05</date><risdate>2015</risdate><volume>21</volume><issue>3</issue><spage>78</spage><epage>90</epage><pages>78-90</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2015.2392076</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2015-05, Vol.21 (3), p.78-90
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_JSTQE_2015_2392076
source IEEE Electronic Library (IEL)
subjects Cavity resonators
Photonics
Protocols
Quantum communication
Quantum entanglement
Quantum theory
Repeaters
Repeaters and Networks
Superconductors
Teleportation
title Inside Quantum Repeaters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inside%20Quantum%20Repeaters&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Munro,%20William%20J.&rft.date=2015-05&rft.volume=21&rft.issue=3&rft.spage=78&rft.epage=90&rft.pages=78-90&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2015.2392076&rft_dat=%3Cproquest_RIE%3E3623035261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662744682&rft_id=info:pmid/&rft_ieee_id=7010905&rfr_iscdi=true