Inside Quantum Repeaters
Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant s...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2015-05, Vol.21 (3), p.78-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 90 |
---|---|
container_issue | 3 |
container_start_page | 78 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 21 |
creator | Munro, William J. Azuma, Koji Tamaki, Kiyoshi Nemoto, Kae |
description | Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations. |
doi_str_mv | 10.1109/JSTQE.2015.2392076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2015_2392076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7010905</ieee_id><sourcerecordid>3623035261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</originalsourceid><addsrcrecordid>eNo9kM9LwzAUgIMoOKd30cvAc-tL-pI0RxlTJwOZTvAW0vyADrfWpD3439vZ4em9w_e9Bx8hNxRySkHdv7xv1oucAeU5KxQDKU7IhHJeZsiRnQ47SJkxAZ_n5CKlLQCUWMKEXC_3qXZ-tu7Nvut3szffetP5mC7JWTBfyV8d55R8PC428-ds9fq0nD-sMlsgdhmaqlDBAqKvgEvnkAbBqKHCoVFMGeqoUCVYF6x3rpAclKuqMnCFaGUopuRuvNvG5rv3qdPbpo_74aWmQjCJKEo2UGykbGxSij7oNtY7E380BX0ooP8K6EMBfSwwSLejVHvv_wUJAw68-AUZEFXi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662744682</pqid></control><display><type>article</type><title>Inside Quantum Repeaters</title><source>IEEE Electronic Library (IEL)</source><creator>Munro, William J. ; Azuma, Koji ; Tamaki, Kiyoshi ; Nemoto, Kae</creator><creatorcontrib>Munro, William J. ; Azuma, Koji ; Tamaki, Kiyoshi ; Nemoto, Kae</creatorcontrib><description>Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2015.2392076</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cavity resonators ; Photonics ; Protocols ; Quantum communication ; Quantum entanglement ; Quantum theory ; Repeaters ; Repeaters and Networks ; Superconductors ; Teleportation</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2015-05, Vol.21 (3), p.78-90</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</citedby><cites>FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7010905$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7010905$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Azuma, Koji</creatorcontrib><creatorcontrib>Tamaki, Kiyoshi</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><title>Inside Quantum Repeaters</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations.</description><subject>Cavity resonators</subject><subject>Photonics</subject><subject>Protocols</subject><subject>Quantum communication</subject><subject>Quantum entanglement</subject><subject>Quantum theory</subject><subject>Repeaters</subject><subject>Repeaters and Networks</subject><subject>Superconductors</subject><subject>Teleportation</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUgIMoOKd30cvAc-tL-pI0RxlTJwOZTvAW0vyADrfWpD3439vZ4em9w_e9Bx8hNxRySkHdv7xv1oucAeU5KxQDKU7IhHJeZsiRnQ47SJkxAZ_n5CKlLQCUWMKEXC_3qXZ-tu7Nvut3szffetP5mC7JWTBfyV8d55R8PC428-ds9fq0nD-sMlsgdhmaqlDBAqKvgEvnkAbBqKHCoVFMGeqoUCVYF6x3rpAclKuqMnCFaGUopuRuvNvG5rv3qdPbpo_74aWmQjCJKEo2UGykbGxSij7oNtY7E380BX0ooP8K6EMBfSwwSLejVHvv_wUJAw68-AUZEFXi</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Munro, William J.</creator><creator>Azuma, Koji</creator><creator>Tamaki, Kiyoshi</creator><creator>Nemoto, Kae</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201505</creationdate><title>Inside Quantum Repeaters</title><author>Munro, William J. ; Azuma, Koji ; Tamaki, Kiyoshi ; Nemoto, Kae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-4ab39fc044eb057dd41f621a16d4a929a1d16980cdfcedd37509dbb8f5944c7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cavity resonators</topic><topic>Photonics</topic><topic>Protocols</topic><topic>Quantum communication</topic><topic>Quantum entanglement</topic><topic>Quantum theory</topic><topic>Repeaters</topic><topic>Repeaters and Networks</topic><topic>Superconductors</topic><topic>Teleportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Munro, William J.</creatorcontrib><creatorcontrib>Azuma, Koji</creatorcontrib><creatorcontrib>Tamaki, Kiyoshi</creatorcontrib><creatorcontrib>Nemoto, Kae</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Munro, William J.</au><au>Azuma, Koji</au><au>Tamaki, Kiyoshi</au><au>Nemoto, Kae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inside Quantum Repeaters</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2015-05</date><risdate>2015</risdate><volume>21</volume><issue>3</issue><spage>78</spage><epage>90</epage><pages>78-90</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Most quantum communication tasks need to rely on the transmission of quantum signals over long distances. Unfortunately, transmission of such signals is most often limited by losses in the channel, the same issue that affects classical communication. Simple signal amplification provides an elegant solution for the classical world, but this is not possible in the quantum world, as the no-cloning theorem forbids such an operation and, thus, an alternative approach, a quantum repeater, is needed. Quantum repeaters enable one to create a known maximally entangled state between the end points of the network by first segmenting the network into pieces, creating entanglement between the segments, and then, connecting those entanglement to create the required long range entanglement. Quantum teleportation then allows an unknown quantum message to be transmitted between them using the long-range entangled state. This form of quantum communication will be at the heart of the future quantum Internet. In this review, we will detail various approaches to quantum repeaters, and discuss their expected performance and limitations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2015.2392076</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2015-05, Vol.21 (3), p.78-90 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTQE_2015_2392076 |
source | IEEE Electronic Library (IEL) |
subjects | Cavity resonators Photonics Protocols Quantum communication Quantum entanglement Quantum theory Repeaters Repeaters and Networks Superconductors Teleportation |
title | Inside Quantum Repeaters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inside%20Quantum%20Repeaters&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Munro,%20William%20J.&rft.date=2015-05&rft.volume=21&rft.issue=3&rft.spage=78&rft.epage=90&rft.pages=78-90&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2015.2392076&rft_dat=%3Cproquest_RIE%3E3623035261%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1662744682&rft_id=info:pmid/&rft_ieee_id=7010905&rfr_iscdi=true |