All Solid-State High-Efficiency Tunable UV Source for Airborne or Satellite-Based Ozone DIAL Systems

We designed, built, and tested two laboratory prototype nanosecond UV sources for airborne or satellite-based ozone differential absorption lidar (DIAL) remote-sensing systems. Our prototypes use a 532-nm second-harmonic pulse from a Q-switched injection-seeded Nd:YAG laser to pump an optical parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2007-05, Vol.13 (3), p.721-731
Hauptverfasser: Armstrong, D.J., Smith, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue 3
container_start_page 721
container_title IEEE journal of selected topics in quantum electronics
container_volume 13
creator Armstrong, D.J.
Smith, A.V.
description We designed, built, and tested two laboratory prototype nanosecond UV sources for airborne or satellite-based ozone differential absorption lidar (DIAL) remote-sensing systems. Our prototypes use a 532-nm second-harmonic pulse from a Q-switched injection-seeded Nd:YAG laser to pump an optical parametric oscillator (OPO) that generates a tunable signal wavelength near 803 nm. The OPO signal is mixed with additional 532 nm light either inside the OPO cavity, or in a subsequent sum-frequency generation (SFG) stage, to generate 10-ns pulses at 320-nm. Our system designs result from an integrated, iterative approach where operating parameters including the pump-beam's spatial profile, the second harmonic generation efficiency, the OPO's cavity geometry, output coupling, crystal lengths, and the length of the SFG crystals, are all determined from numerical modeling. By using this approach, we obtained 320 nm pulse energies approaching 200 mJ with overall optical conversion efficiency-from 1064 to 320 nm-exceeding 20%. To optimize efficiency, we incorporate three important design characteristics: a pump beam having a high-quality flat-topped spatial profile, an image-rotating non-planar ring-cavity OPO capable of generating high-quality large-diameter flat-topped beams, and pulse injection seeding of the OPO to achieve near-zero cavity buildup time to enhance the efficiency of sum-frequency mining. We believe additional optimization of our designs may eventually yield UV pulse energies approaching 300 mJ with optical conversion efficiencies comparable to those of our current systems.
doi_str_mv 10.1109/JSTQE.2007.896600
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTQE_2007_896600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4244405</ieee_id><sourcerecordid>34439314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-186eefeb27a22902a9da66d0e152ff4db234cdebf8ad12957a1dc9a3b20ec8523</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSNEJUrpB0BcLA5wyjL-G_u4lC0tWqmqskXcLMcZg6tsUuzsYfn09bKIAwd6mifN741m5lXVawoLSsF8-NJublcLBtAstFEK4Fl1SqXUtZCCPS8amqZmCr69qF7mfA8AWmg4rfrlMJB2GmJft7ObkVzF7z_qVQjRRxz9nmx2o-sGJHdfC7ZLHkmYElnG1E1pRFJ0W2zDEGesP7qMPbn5NZXGp-vlmrT7POM2v6pOghsynv-pZ9Xd5WpzcVWvbz5fXyzXtee6mWuqFWLAjjWOMQPMmd4p1QNSyUIQfce48D12QbueMiMbR3tvHO8YoNeS8bPq_XHuQ5p-7jDPdhuzL8u5Eaddtga4YqCNeJLUGpSUEqCQ7_5LciG44fQw8u0_4H3511jutYYyqrSWtED0CPk05Zww2IcUty7tLQV7CNL-DtIegrTHIIvnzdETEfEvL5gQAiR_BAORmI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912168851</pqid></control><display><type>article</type><title>All Solid-State High-Efficiency Tunable UV Source for Airborne or Satellite-Based Ozone DIAL Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Armstrong, D.J. ; Smith, A.V.</creator><creatorcontrib>Armstrong, D.J. ; Smith, A.V.</creatorcontrib><description>We designed, built, and tested two laboratory prototype nanosecond UV sources for airborne or satellite-based ozone differential absorption lidar (DIAL) remote-sensing systems. Our prototypes use a 532-nm second-harmonic pulse from a Q-switched injection-seeded Nd:YAG laser to pump an optical parametric oscillator (OPO) that generates a tunable signal wavelength near 803 nm. The OPO signal is mixed with additional 532 nm light either inside the OPO cavity, or in a subsequent sum-frequency generation (SFG) stage, to generate 10-ns pulses at 320-nm. Our system designs result from an integrated, iterative approach where operating parameters including the pump-beam's spatial profile, the second harmonic generation efficiency, the OPO's cavity geometry, output coupling, crystal lengths, and the length of the SFG crystals, are all determined from numerical modeling. By using this approach, we obtained 320 nm pulse energies approaching 200 mJ with overall optical conversion efficiency-from 1064 to 320 nm-exceeding 20%. To optimize efficiency, we incorporate three important design characteristics: a pump beam having a high-quality flat-topped spatial profile, an image-rotating non-planar ring-cavity OPO capable of generating high-quality large-diameter flat-topped beams, and pulse injection seeding of the OPO to achieve near-zero cavity buildup time to enhance the efficiency of sum-frequency mining. We believe additional optimization of our designs may eventually yield UV pulse energies approaching 300 mJ with optical conversion efficiencies comparable to those of our current systems.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2007.896600</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Beams (radiation) ; Construction ; Design ; Dials ; Direct power generation ; Efficiency ; Frequency conversion ; Holes ; Laser excitation ; Mathematical models ; Nanostructure ; Nonlinear optics ; Optical harmonic generation ; optical parametric oscillator (OPO) ; Optical pulse generation ; Optical pumping ; Product development ; Prototypes ; remote sensing ; Signal generators ; Solid state circuits ; Tunable circuits and devices ; Ultraviolet sources ; UV generation</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2007-05, Vol.13 (3), p.721-731</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-186eefeb27a22902a9da66d0e152ff4db234cdebf8ad12957a1dc9a3b20ec8523</citedby><cites>FETCH-LOGICAL-c387t-186eefeb27a22902a9da66d0e152ff4db234cdebf8ad12957a1dc9a3b20ec8523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4244405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4244405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Armstrong, D.J.</creatorcontrib><creatorcontrib>Smith, A.V.</creatorcontrib><title>All Solid-State High-Efficiency Tunable UV Source for Airborne or Satellite-Based Ozone DIAL Systems</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>We designed, built, and tested two laboratory prototype nanosecond UV sources for airborne or satellite-based ozone differential absorption lidar (DIAL) remote-sensing systems. Our prototypes use a 532-nm second-harmonic pulse from a Q-switched injection-seeded Nd:YAG laser to pump an optical parametric oscillator (OPO) that generates a tunable signal wavelength near 803 nm. The OPO signal is mixed with additional 532 nm light either inside the OPO cavity, or in a subsequent sum-frequency generation (SFG) stage, to generate 10-ns pulses at 320-nm. Our system designs result from an integrated, iterative approach where operating parameters including the pump-beam's spatial profile, the second harmonic generation efficiency, the OPO's cavity geometry, output coupling, crystal lengths, and the length of the SFG crystals, are all determined from numerical modeling. By using this approach, we obtained 320 nm pulse energies approaching 200 mJ with overall optical conversion efficiency-from 1064 to 320 nm-exceeding 20%. To optimize efficiency, we incorporate three important design characteristics: a pump beam having a high-quality flat-topped spatial profile, an image-rotating non-planar ring-cavity OPO capable of generating high-quality large-diameter flat-topped beams, and pulse injection seeding of the OPO to achieve near-zero cavity buildup time to enhance the efficiency of sum-frequency mining. We believe additional optimization of our designs may eventually yield UV pulse energies approaching 300 mJ with optical conversion efficiencies comparable to those of our current systems.</description><subject>Beams (radiation)</subject><subject>Construction</subject><subject>Design</subject><subject>Dials</subject><subject>Direct power generation</subject><subject>Efficiency</subject><subject>Frequency conversion</subject><subject>Holes</subject><subject>Laser excitation</subject><subject>Mathematical models</subject><subject>Nanostructure</subject><subject>Nonlinear optics</subject><subject>Optical harmonic generation</subject><subject>optical parametric oscillator (OPO)</subject><subject>Optical pulse generation</subject><subject>Optical pumping</subject><subject>Product development</subject><subject>Prototypes</subject><subject>remote sensing</subject><subject>Signal generators</subject><subject>Solid state circuits</subject><subject>Tunable circuits and devices</subject><subject>Ultraviolet sources</subject><subject>UV generation</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9v1DAQxSNEJUrpB0BcLA5wyjL-G_u4lC0tWqmqskXcLMcZg6tsUuzsYfn09bKIAwd6mifN741m5lXVawoLSsF8-NJublcLBtAstFEK4Fl1SqXUtZCCPS8amqZmCr69qF7mfA8AWmg4rfrlMJB2GmJft7ObkVzF7z_qVQjRRxz9nmx2o-sGJHdfC7ZLHkmYElnG1E1pRFJ0W2zDEGesP7qMPbn5NZXGp-vlmrT7POM2v6pOghsynv-pZ9Xd5WpzcVWvbz5fXyzXtee6mWuqFWLAjjWOMQPMmd4p1QNSyUIQfce48D12QbueMiMbR3tvHO8YoNeS8bPq_XHuQ5p-7jDPdhuzL8u5Eaddtga4YqCNeJLUGpSUEqCQ7_5LciG44fQw8u0_4H3511jutYYyqrSWtED0CPk05Zww2IcUty7tLQV7CNL-DtIegrTHIIvnzdETEfEvL5gQAiR_BAORmI8</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Armstrong, D.J.</creator><creator>Smith, A.V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope></search><sort><creationdate>20070501</creationdate><title>All Solid-State High-Efficiency Tunable UV Source for Airborne or Satellite-Based Ozone DIAL Systems</title><author>Armstrong, D.J. ; Smith, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-186eefeb27a22902a9da66d0e152ff4db234cdebf8ad12957a1dc9a3b20ec8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Beams (radiation)</topic><topic>Construction</topic><topic>Design</topic><topic>Dials</topic><topic>Direct power generation</topic><topic>Efficiency</topic><topic>Frequency conversion</topic><topic>Holes</topic><topic>Laser excitation</topic><topic>Mathematical models</topic><topic>Nanostructure</topic><topic>Nonlinear optics</topic><topic>Optical harmonic generation</topic><topic>optical parametric oscillator (OPO)</topic><topic>Optical pulse generation</topic><topic>Optical pumping</topic><topic>Product development</topic><topic>Prototypes</topic><topic>remote sensing</topic><topic>Signal generators</topic><topic>Solid state circuits</topic><topic>Tunable circuits and devices</topic><topic>Ultraviolet sources</topic><topic>UV generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Armstrong, D.J.</creatorcontrib><creatorcontrib>Smith, A.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Armstrong, D.J.</au><au>Smith, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All Solid-State High-Efficiency Tunable UV Source for Airborne or Satellite-Based Ozone DIAL Systems</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2007-05-01</date><risdate>2007</risdate><volume>13</volume><issue>3</issue><spage>721</spage><epage>731</epage><pages>721-731</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>We designed, built, and tested two laboratory prototype nanosecond UV sources for airborne or satellite-based ozone differential absorption lidar (DIAL) remote-sensing systems. Our prototypes use a 532-nm second-harmonic pulse from a Q-switched injection-seeded Nd:YAG laser to pump an optical parametric oscillator (OPO) that generates a tunable signal wavelength near 803 nm. The OPO signal is mixed with additional 532 nm light either inside the OPO cavity, or in a subsequent sum-frequency generation (SFG) stage, to generate 10-ns pulses at 320-nm. Our system designs result from an integrated, iterative approach where operating parameters including the pump-beam's spatial profile, the second harmonic generation efficiency, the OPO's cavity geometry, output coupling, crystal lengths, and the length of the SFG crystals, are all determined from numerical modeling. By using this approach, we obtained 320 nm pulse energies approaching 200 mJ with overall optical conversion efficiency-from 1064 to 320 nm-exceeding 20%. To optimize efficiency, we incorporate three important design characteristics: a pump beam having a high-quality flat-topped spatial profile, an image-rotating non-planar ring-cavity OPO capable of generating high-quality large-diameter flat-topped beams, and pulse injection seeding of the OPO to achieve near-zero cavity buildup time to enhance the efficiency of sum-frequency mining. We believe additional optimization of our designs may eventually yield UV pulse energies approaching 300 mJ with optical conversion efficiencies comparable to those of our current systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2007.896600</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2007-05, Vol.13 (3), p.721-731
issn 1077-260X
1558-4542
language eng
recordid cdi_crossref_primary_10_1109_JSTQE_2007_896600
source IEEE Electronic Library (IEL)
subjects Beams (radiation)
Construction
Design
Dials
Direct power generation
Efficiency
Frequency conversion
Holes
Laser excitation
Mathematical models
Nanostructure
Nonlinear optics
Optical harmonic generation
optical parametric oscillator (OPO)
Optical pulse generation
Optical pumping
Product development
Prototypes
remote sensing
Signal generators
Solid state circuits
Tunable circuits and devices
Ultraviolet sources
UV generation
title All Solid-State High-Efficiency Tunable UV Source for Airborne or Satellite-Based Ozone DIAL Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20Solid-State%20High-Efficiency%20Tunable%20UV%20Source%20for%20Airborne%20or%20Satellite-Based%20Ozone%20DIAL%20Systems&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Armstrong,%20D.J.&rft.date=2007-05-01&rft.volume=13&rft.issue=3&rft.spage=721&rft.epage=731&rft.pages=721-731&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2007.896600&rft_dat=%3Cproquest_RIE%3E34439314%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912168851&rft_id=info:pmid/&rft_ieee_id=4244405&rfr_iscdi=true