Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy
The unmanned aerial vehicle (UAV) remote sensing technology provides new opportunities to estimate crop aboveground biomass (AGB). However, the application of UAV remote sensing data in practical farms remains challenging because to obtain UAV image features, including spectral index and texture fea...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2025, Vol.18, p.878-891 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | |
container_start_page | 878 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 18 |
creator | Niu, Yaxiao Song, Xiaoying Zhang, Liyuan Xu, Lizhang Wang, Aichen Zhu, Qingzhen |
description | The unmanned aerial vehicle (UAV) remote sensing technology provides new opportunities to estimate crop aboveground biomass (AGB). However, the application of UAV remote sensing data in practical farms remains challenging because to obtain UAV image features, including spectral index and texture features (TFs), and to improve the accuracy of AGB estimation have not been determined. In response to this problem, spectral indices (SIs) were derived from UAV RGB images with four spatial resolutions, and eight gray-level co-occurrence matrix TFs were calculated using different calculation parameters (TF_CP) including six window sizes and four directions. Maize AGB estimation models were established based on SIs only and combination of SIs and TFs using machine learning algorithms. We explored the impacts of spatial resolution and TF_CP on the performance of AGB models and analyzed the potentials of combination of SIs and TFs for improving maize AGB estimation accuracy. Results reveal that the performance of maize AGB estimation can be enhanced by supplementing SIs with TFs. The optimal image resolution and TF_CP are 20 mm and window size of 11 × 11 and direction of 90°. Combining TFs calculated with multi-TF_CPs further enhances estimation performance with an adjusted coefficient of determination of 0.75 and 0.81, and root mean square error of 963.50 and 302.19 g/m 2 for fresh and dry AGB, respectively. These findings indicated the significance of choosing the optimal spatial resolution and TF extraction strategy in enhancing UAV-based maize AGB estimation performance, particularly in the practical farming scenario. |
doi_str_mv | 10.1109/JSTARS.2024.3501673 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2024_3501673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10756721</ieee_id><doaj_id>oai_doaj_org_article_bcc960aeb83445029b56f714168aa087</doaj_id><sourcerecordid>3141612167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-889ebc2a4294f7b782e41816fc602d877bd0e0a94b7873895008e065b99ba6093</originalsourceid><addsrcrecordid>eNpNkctu2zAQRYmiAeq6-YJ0QaBrOXyJj6UTKK2LFAViJ1uCokauDFlMSamIf6FfHckKiq6GnLn3DomD0BUlK0qJuf6-3a0ftitGmFjxnFCp-Du0YDSnGc15_h4tqOEmo4KID-hjSgdCJFOGL9DfovvlOt90e_wjVNDitfdDdP6EQ40f10_ZjUtQ4ZsmHF1KuEh9c3R9EzpcnnDxx7XDeBvNRV2D79Pk2hzdHvADpNAOZ6XrKryDl36IgO_AnWvx0o9bzuPteOphf_qELmrXJrh8q0v0eFfsbr9l9z-_bm7X95ln2vSZ1gZKz5xgRtSqVJqBoJrK2kvCKq1UWREgzohxpLg2OSEaiMxLY0onieFLtJlzq-AO9jmOH4onG1xjz40Q99bFvvEt2NJ7I4mDUnMhcsJMmctaUUGldo6M8Uv0Zc56juH3AKm3hzDEbny-5ZOMsonFEvFZ5WNIKUL9bysldgJoZ4B2AmjfAI6uz7OrAYD_HCqXilH-Co2Bl0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141612167</pqid></control><display><type>article</type><title>Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Niu, Yaxiao ; Song, Xiaoying ; Zhang, Liyuan ; Xu, Lizhang ; Wang, Aichen ; Zhu, Qingzhen</creator><creatorcontrib>Niu, Yaxiao ; Song, Xiaoying ; Zhang, Liyuan ; Xu, Lizhang ; Wang, Aichen ; Zhu, Qingzhen</creatorcontrib><description>The unmanned aerial vehicle (UAV) remote sensing technology provides new opportunities to estimate crop aboveground biomass (AGB). However, the application of UAV remote sensing data in practical farms remains challenging because to obtain UAV image features, including spectral index and texture features (TFs), and to improve the accuracy of AGB estimation have not been determined. In response to this problem, spectral indices (SIs) were derived from UAV RGB images with four spatial resolutions, and eight gray-level co-occurrence matrix TFs were calculated using different calculation parameters (TF_CP) including six window sizes and four directions. Maize AGB estimation models were established based on SIs only and combination of SIs and TFs using machine learning algorithms. We explored the impacts of spatial resolution and TF_CP on the performance of AGB models and analyzed the potentials of combination of SIs and TFs for improving maize AGB estimation accuracy. Results reveal that the performance of maize AGB estimation can be enhanced by supplementing SIs with TFs. The optimal image resolution and TF_CP are 20 mm and window size of 11 × 11 and direction of 90°. Combining TFs calculated with multi-TF_CPs further enhances estimation performance with an adjusted coefficient of determination of 0.75 and 0.81, and root mean square error of 963.50 and 302.19 g/m 2 for fresh and dry AGB, respectively. These findings indicated the significance of choosing the optimal spatial resolution and TF extraction strategy in enhancing UAV-based maize AGB estimation performance, particularly in the practical farming scenario.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3501673</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Autonomous aerial vehicles ; Biomass ; Calculation parameters ; Color imagery ; combination strategy ; Corn ; Crops ; Data collection ; Estimation ; Feature extraction ; Image enhancement ; Image processing ; Image resolution ; Machine learning ; maize ; Remote sensing ; Silicon ; Spatial discrimination ; Spatial resolution ; Texture ; texture features (TFs) ; Unmanned aerial vehicles ; Vegetation mapping</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2025, Vol.18, p.878-891</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-889ebc2a4294f7b782e41816fc602d877bd0e0a94b7873895008e065b99ba6093</cites><orcidid>0000-0002-3072-8954 ; 0000-0002-9500-712X ; 0009-0003-7045-1472 ; 0000-0002-5122-9759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2101,4023,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Niu, Yaxiao</creatorcontrib><creatorcontrib>Song, Xiaoying</creatorcontrib><creatorcontrib>Zhang, Liyuan</creatorcontrib><creatorcontrib>Xu, Lizhang</creatorcontrib><creatorcontrib>Wang, Aichen</creatorcontrib><creatorcontrib>Zhu, Qingzhen</creatorcontrib><title>Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The unmanned aerial vehicle (UAV) remote sensing technology provides new opportunities to estimate crop aboveground biomass (AGB). However, the application of UAV remote sensing data in practical farms remains challenging because to obtain UAV image features, including spectral index and texture features (TFs), and to improve the accuracy of AGB estimation have not been determined. In response to this problem, spectral indices (SIs) were derived from UAV RGB images with four spatial resolutions, and eight gray-level co-occurrence matrix TFs were calculated using different calculation parameters (TF_CP) including six window sizes and four directions. Maize AGB estimation models were established based on SIs only and combination of SIs and TFs using machine learning algorithms. We explored the impacts of spatial resolution and TF_CP on the performance of AGB models and analyzed the potentials of combination of SIs and TFs for improving maize AGB estimation accuracy. Results reveal that the performance of maize AGB estimation can be enhanced by supplementing SIs with TFs. The optimal image resolution and TF_CP are 20 mm and window size of 11 × 11 and direction of 90°. Combining TFs calculated with multi-TF_CPs further enhances estimation performance with an adjusted coefficient of determination of 0.75 and 0.81, and root mean square error of 963.50 and 302.19 g/m 2 for fresh and dry AGB, respectively. These findings indicated the significance of choosing the optimal spatial resolution and TF extraction strategy in enhancing UAV-based maize AGB estimation performance, particularly in the practical farming scenario.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Biomass</subject><subject>Calculation parameters</subject><subject>Color imagery</subject><subject>combination strategy</subject><subject>Corn</subject><subject>Crops</subject><subject>Data collection</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Image enhancement</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Machine learning</subject><subject>maize</subject><subject>Remote sensing</subject><subject>Silicon</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Texture</subject><subject>texture features (TFs)</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation mapping</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctu2zAQRYmiAeq6-YJ0QaBrOXyJj6UTKK2LFAViJ1uCokauDFlMSamIf6FfHckKiq6GnLn3DomD0BUlK0qJuf6-3a0ftitGmFjxnFCp-Du0YDSnGc15_h4tqOEmo4KID-hjSgdCJFOGL9DfovvlOt90e_wjVNDitfdDdP6EQ40f10_ZjUtQ4ZsmHF1KuEh9c3R9EzpcnnDxx7XDeBvNRV2D79Pk2hzdHvADpNAOZ6XrKryDl36IgO_AnWvx0o9bzuPteOphf_qELmrXJrh8q0v0eFfsbr9l9z-_bm7X95ln2vSZ1gZKz5xgRtSqVJqBoJrK2kvCKq1UWREgzohxpLg2OSEaiMxLY0onieFLtJlzq-AO9jmOH4onG1xjz40Q99bFvvEt2NJ7I4mDUnMhcsJMmctaUUGldo6M8Uv0Zc56juH3AKm3hzDEbny-5ZOMsonFEvFZ5WNIKUL9bysldgJoZ4B2AmjfAI6uz7OrAYD_HCqXilH-Co2Bl0A</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Niu, Yaxiao</creator><creator>Song, Xiaoying</creator><creator>Zhang, Liyuan</creator><creator>Xu, Lizhang</creator><creator>Wang, Aichen</creator><creator>Zhu, Qingzhen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3072-8954</orcidid><orcidid>https://orcid.org/0000-0002-9500-712X</orcidid><orcidid>https://orcid.org/0009-0003-7045-1472</orcidid><orcidid>https://orcid.org/0000-0002-5122-9759</orcidid></search><sort><creationdate>2025</creationdate><title>Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy</title><author>Niu, Yaxiao ; Song, Xiaoying ; Zhang, Liyuan ; Xu, Lizhang ; Wang, Aichen ; Zhu, Qingzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-889ebc2a4294f7b782e41816fc602d877bd0e0a94b7873895008e065b99ba6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Biomass</topic><topic>Calculation parameters</topic><topic>Color imagery</topic><topic>combination strategy</topic><topic>Corn</topic><topic>Crops</topic><topic>Data collection</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Image enhancement</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Machine learning</topic><topic>maize</topic><topic>Remote sensing</topic><topic>Silicon</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Texture</topic><topic>texture features (TFs)</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yaxiao</creatorcontrib><creatorcontrib>Song, Xiaoying</creatorcontrib><creatorcontrib>Zhang, Liyuan</creatorcontrib><creatorcontrib>Xu, Lizhang</creatorcontrib><creatorcontrib>Wang, Aichen</creatorcontrib><creatorcontrib>Zhu, Qingzhen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yaxiao</au><au>Song, Xiaoying</au><au>Zhang, Liyuan</au><au>Xu, Lizhang</au><au>Wang, Aichen</au><au>Zhu, Qingzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2025</date><risdate>2025</risdate><volume>18</volume><spage>878</spage><epage>891</epage><pages>878-891</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>The unmanned aerial vehicle (UAV) remote sensing technology provides new opportunities to estimate crop aboveground biomass (AGB). However, the application of UAV remote sensing data in practical farms remains challenging because to obtain UAV image features, including spectral index and texture features (TFs), and to improve the accuracy of AGB estimation have not been determined. In response to this problem, spectral indices (SIs) were derived from UAV RGB images with four spatial resolutions, and eight gray-level co-occurrence matrix TFs were calculated using different calculation parameters (TF_CP) including six window sizes and four directions. Maize AGB estimation models were established based on SIs only and combination of SIs and TFs using machine learning algorithms. We explored the impacts of spatial resolution and TF_CP on the performance of AGB models and analyzed the potentials of combination of SIs and TFs for improving maize AGB estimation accuracy. Results reveal that the performance of maize AGB estimation can be enhanced by supplementing SIs with TFs. The optimal image resolution and TF_CP are 20 mm and window size of 11 × 11 and direction of 90°. Combining TFs calculated with multi-TF_CPs further enhances estimation performance with an adjusted coefficient of determination of 0.75 and 0.81, and root mean square error of 963.50 and 302.19 g/m 2 for fresh and dry AGB, respectively. These findings indicated the significance of choosing the optimal spatial resolution and TF extraction strategy in enhancing UAV-based maize AGB estimation performance, particularly in the practical farming scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3501673</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3072-8954</orcidid><orcidid>https://orcid.org/0000-0002-9500-712X</orcidid><orcidid>https://orcid.org/0009-0003-7045-1472</orcidid><orcidid>https://orcid.org/0000-0002-5122-9759</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2025, Vol.18, p.878-891 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2024_3501673 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Autonomous aerial vehicles Biomass Calculation parameters Color imagery combination strategy Corn Crops Data collection Estimation Feature extraction Image enhancement Image processing Image resolution Machine learning maize Remote sensing Silicon Spatial discrimination Spatial resolution Texture texture features (TFs) Unmanned aerial vehicles Vegetation mapping |
title | Enhancing Model Accuracy of UAV-Based Biomass Estimation by Evaluating Effects of Image Resolution and Texture Feature Extraction Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A11%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Model%20Accuracy%20of%20UAV-Based%20Biomass%20Estimation%20by%20Evaluating%20Effects%20of%20Image%20Resolution%20and%20Texture%20Feature%20Extraction%20Strategy&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Niu,%20Yaxiao&rft.date=2025&rft.volume=18&rft.spage=878&rft.epage=891&rft.pages=878-891&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3501673&rft_dat=%3Cproquest_cross%3E3141612167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3141612167&rft_id=info:pmid/&rft_ieee_id=10756721&rft_doaj_id=oai_doaj_org_article_bcc960aeb83445029b56f714168aa087&rfr_iscdi=true |