UAV-Based Intelligent Detection of Individual Trees in Moso Bamboo Forests With Complex Canopy Structure
Detection of individual trees in Moso bamboo forests is critical to forestry resource management. However, accurate and rapid detection remains a significant challenge due to the high density of Moso bamboo forests and complex canopy structure. This study proposed a new canopy detection and counting...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.11915-11930 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11930 |
---|---|
container_issue | |
container_start_page | 11915 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Lv, Lujin Zhao, Yinyin Li, Xuejian Yu, Jiacong Song, Meixuan Huang, Lei Mao, Fangjie Du, Huaqiang |
description | Detection of individual trees in Moso bamboo forests is critical to forestry resource management. However, accurate and rapid detection remains a significant challenge due to the high density of Moso bamboo forests and complex canopy structure. This study proposed a new canopy detection and counting method in Moso bamboo forests based on multiband images. First, this study used the dynamic thresholding method to extract the Moso bamboo forests' unique canopy hook tip features and coupled the original unmanned aerial vehicle (UAV) visible light images to construct multiband images. Then, this study utilized three object detection networks (faster R-CNN, YOLOv5, and YOLOv7) to detect the individual trees in Moso bamboo forests and to count the number of trees in the sample plots using the NMS method. This study assessed the new method's accuracy and compared the original UAV visible light images with multiband images in 84 Moso bamboo forest plots. The results showed that detecting the Moso bamboo forest canopy using multiband images improved accuracy in all three networks. On the test dataset, the YOLOv7 network using the multi-band images had the highest AP (89.15%) and R 2 (93.17%), respectively, which were 3.18% and 15.5% higher than when using the original UAV visible light images. Faster R-CNN and YOLOv5 using multiband images also improved R 2 by 7.3% and 7.2%, respectively. In addition, in the test dataset, YOLOv7 had the largest RMSE reduction of the three networks after using the multiband images, with a 37.93% reduction. |
doi_str_mv | 10.1109/JSTARS.2024.3422390 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2024_3422390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10584251</ieee_id><doaj_id>oai_doaj_org_article_81e06ad403b14d3fa2b3dc8c6b71db66</doaj_id><sourcerecordid>3081861761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ffe41dd82fcc0282dc86703ec06a02e69c24ba6c648c43db5ee9bd8c052cfb013</originalsourceid><addsrcrecordid>eNpNkVtPGzEQha2KSg2UX1AeLPG8wbd1vI8hlDYVVaUm0EfLl1lwtFkH21uVf98Ni6o-jTQz55wZfQh9omROKWmuvm22y5-bOSNMzLlgjDfkHZoxWtOK1rw-QTPa8KaigogP6DTnHSGSLRo-Q0_3y4fq2mTweN0X6LrwCH3BN1DAlRB7HNtx4MPv4AfT4W0CyDj0-HvMEV-bvY0R38YEuWT8K5QnvIr7Qwd_8Mr08fCCNyUNrgwJPqL3rekynL_VM3R_-3m7-lrd_fiyXi3vKseEKFXbgqDeK9Y6R5hi3im5IBwckYYwkM24Zo10UignuLc1QGO9cqRmrrWE8jO0nnx9NDt9SGFv0ouOJujXRkyP2qQSXAdaURhdvSDcUuF5a5jlY56TdkG9lXL0upy8Dik-D-OPeheH1I_na04UVZIu5DGRT1suxZwTtP9SKdFHPHrCo4949BueUXUxqQIA_KeolWA15X8BxCOM7w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3081861761</pqid></control><display><type>article</type><title>UAV-Based Intelligent Detection of Individual Trees in Moso Bamboo Forests With Complex Canopy Structure</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lv, Lujin ; Zhao, Yinyin ; Li, Xuejian ; Yu, Jiacong ; Song, Meixuan ; Huang, Lei ; Mao, Fangjie ; Du, Huaqiang</creator><creatorcontrib>Lv, Lujin ; Zhao, Yinyin ; Li, Xuejian ; Yu, Jiacong ; Song, Meixuan ; Huang, Lei ; Mao, Fangjie ; Du, Huaqiang</creatorcontrib><description>Detection of individual trees in Moso bamboo forests is critical to forestry resource management. However, accurate and rapid detection remains a significant challenge due to the high density of Moso bamboo forests and complex canopy structure. This study proposed a new canopy detection and counting method in Moso bamboo forests based on multiband images. First, this study used the dynamic thresholding method to extract the Moso bamboo forests' unique canopy hook tip features and coupled the original unmanned aerial vehicle (UAV) visible light images to construct multiband images. Then, this study utilized three object detection networks (faster R-CNN, YOLOv5, and YOLOv7) to detect the individual trees in Moso bamboo forests and to count the number of trees in the sample plots using the NMS method. This study assessed the new method's accuracy and compared the original UAV visible light images with multiband images in 84 Moso bamboo forest plots. The results showed that detecting the Moso bamboo forest canopy using multiband images improved accuracy in all three networks. On the test dataset, the YOLOv7 network using the multi-band images had the highest AP (89.15%) and R 2 (93.17%), respectively, which were 3.18% and 15.5% higher than when using the original UAV visible light images. Faster R-CNN and YOLOv5 using multiband images also improved R 2 by 7.3% and 7.2%, respectively. In addition, in the test dataset, YOLOv7 had the largest RMSE reduction of the three networks after using the multiband images, with a 37.93% reduction.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3422390</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Autonomous aerial vehicles ; Bamboo ; Canopies ; Canopy ; Counting trees ; Datasets ; deep learning ; Feature extraction ; Forest management ; Forestry ; Forests ; Light ; Moso bamboo forests ; multiband data ; Networks ; Object recognition ; Phyllostachys edulis ; Plant cover ; Random forests ; Resource management ; Trees ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Vegetation</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.11915-11930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ffe41dd82fcc0282dc86703ec06a02e69c24ba6c648c43db5ee9bd8c052cfb013</cites><orcidid>0000-0003-2005-3452 ; 0000-0002-7553-2576 ; 0000-0002-6765-2279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Lv, Lujin</creatorcontrib><creatorcontrib>Zhao, Yinyin</creatorcontrib><creatorcontrib>Li, Xuejian</creatorcontrib><creatorcontrib>Yu, Jiacong</creatorcontrib><creatorcontrib>Song, Meixuan</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Mao, Fangjie</creatorcontrib><creatorcontrib>Du, Huaqiang</creatorcontrib><title>UAV-Based Intelligent Detection of Individual Trees in Moso Bamboo Forests With Complex Canopy Structure</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Detection of individual trees in Moso bamboo forests is critical to forestry resource management. However, accurate and rapid detection remains a significant challenge due to the high density of Moso bamboo forests and complex canopy structure. This study proposed a new canopy detection and counting method in Moso bamboo forests based on multiband images. First, this study used the dynamic thresholding method to extract the Moso bamboo forests' unique canopy hook tip features and coupled the original unmanned aerial vehicle (UAV) visible light images to construct multiband images. Then, this study utilized three object detection networks (faster R-CNN, YOLOv5, and YOLOv7) to detect the individual trees in Moso bamboo forests and to count the number of trees in the sample plots using the NMS method. This study assessed the new method's accuracy and compared the original UAV visible light images with multiband images in 84 Moso bamboo forest plots. The results showed that detecting the Moso bamboo forest canopy using multiband images improved accuracy in all three networks. On the test dataset, the YOLOv7 network using the multi-band images had the highest AP (89.15%) and R 2 (93.17%), respectively, which were 3.18% and 15.5% higher than when using the original UAV visible light images. Faster R-CNN and YOLOv5 using multiband images also improved R 2 by 7.3% and 7.2%, respectively. In addition, in the test dataset, YOLOv7 had the largest RMSE reduction of the three networks after using the multiband images, with a 37.93% reduction.</description><subject>Accuracy</subject><subject>Autonomous aerial vehicles</subject><subject>Bamboo</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Counting trees</subject><subject>Datasets</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Forests</subject><subject>Light</subject><subject>Moso bamboo forests</subject><subject>multiband data</subject><subject>Networks</subject><subject>Object recognition</subject><subject>Phyllostachys edulis</subject><subject>Plant cover</subject><subject>Random forests</subject><subject>Resource management</subject><subject>Trees</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtPGzEQha2KSg2UX1AeLPG8wbd1vI8hlDYVVaUm0EfLl1lwtFkH21uVf98Ni6o-jTQz55wZfQh9omROKWmuvm22y5-bOSNMzLlgjDfkHZoxWtOK1rw-QTPa8KaigogP6DTnHSGSLRo-Q0_3y4fq2mTweN0X6LrwCH3BN1DAlRB7HNtx4MPv4AfT4W0CyDj0-HvMEV-bvY0R38YEuWT8K5QnvIr7Qwd_8Mr08fCCNyUNrgwJPqL3rekynL_VM3R_-3m7-lrd_fiyXi3vKseEKFXbgqDeK9Y6R5hi3im5IBwckYYwkM24Zo10UignuLc1QGO9cqRmrrWE8jO0nnx9NDt9SGFv0ouOJujXRkyP2qQSXAdaURhdvSDcUuF5a5jlY56TdkG9lXL0upy8Dik-D-OPeheH1I_na04UVZIu5DGRT1suxZwTtP9SKdFHPHrCo4949BueUXUxqQIA_KeolWA15X8BxCOM7w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lv, Lujin</creator><creator>Zhao, Yinyin</creator><creator>Li, Xuejian</creator><creator>Yu, Jiacong</creator><creator>Song, Meixuan</creator><creator>Huang, Lei</creator><creator>Mao, Fangjie</creator><creator>Du, Huaqiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2005-3452</orcidid><orcidid>https://orcid.org/0000-0002-7553-2576</orcidid><orcidid>https://orcid.org/0000-0002-6765-2279</orcidid></search><sort><creationdate>2024</creationdate><title>UAV-Based Intelligent Detection of Individual Trees in Moso Bamboo Forests With Complex Canopy Structure</title><author>Lv, Lujin ; Zhao, Yinyin ; Li, Xuejian ; Yu, Jiacong ; Song, Meixuan ; Huang, Lei ; Mao, Fangjie ; Du, Huaqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ffe41dd82fcc0282dc86703ec06a02e69c24ba6c648c43db5ee9bd8c052cfb013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Autonomous aerial vehicles</topic><topic>Bamboo</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Counting trees</topic><topic>Datasets</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Forests</topic><topic>Light</topic><topic>Moso bamboo forests</topic><topic>multiband data</topic><topic>Networks</topic><topic>Object recognition</topic><topic>Phyllostachys edulis</topic><topic>Plant cover</topic><topic>Random forests</topic><topic>Resource management</topic><topic>Trees</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Lujin</creatorcontrib><creatorcontrib>Zhao, Yinyin</creatorcontrib><creatorcontrib>Li, Xuejian</creatorcontrib><creatorcontrib>Yu, Jiacong</creatorcontrib><creatorcontrib>Song, Meixuan</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Mao, Fangjie</creatorcontrib><creatorcontrib>Du, Huaqiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Lujin</au><au>Zhao, Yinyin</au><au>Li, Xuejian</au><au>Yu, Jiacong</au><au>Song, Meixuan</au><au>Huang, Lei</au><au>Mao, Fangjie</au><au>Du, Huaqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV-Based Intelligent Detection of Individual Trees in Moso Bamboo Forests With Complex Canopy Structure</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>11915</spage><epage>11930</epage><pages>11915-11930</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Detection of individual trees in Moso bamboo forests is critical to forestry resource management. However, accurate and rapid detection remains a significant challenge due to the high density of Moso bamboo forests and complex canopy structure. This study proposed a new canopy detection and counting method in Moso bamboo forests based on multiband images. First, this study used the dynamic thresholding method to extract the Moso bamboo forests' unique canopy hook tip features and coupled the original unmanned aerial vehicle (UAV) visible light images to construct multiband images. Then, this study utilized three object detection networks (faster R-CNN, YOLOv5, and YOLOv7) to detect the individual trees in Moso bamboo forests and to count the number of trees in the sample plots using the NMS method. This study assessed the new method's accuracy and compared the original UAV visible light images with multiband images in 84 Moso bamboo forest plots. The results showed that detecting the Moso bamboo forest canopy using multiband images improved accuracy in all three networks. On the test dataset, the YOLOv7 network using the multi-band images had the highest AP (89.15%) and R 2 (93.17%), respectively, which were 3.18% and 15.5% higher than when using the original UAV visible light images. Faster R-CNN and YOLOv5 using multiband images also improved R 2 by 7.3% and 7.2%, respectively. In addition, in the test dataset, YOLOv7 had the largest RMSE reduction of the three networks after using the multiband images, with a 37.93% reduction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3422390</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2005-3452</orcidid><orcidid>https://orcid.org/0000-0002-7553-2576</orcidid><orcidid>https://orcid.org/0000-0002-6765-2279</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.11915-11930 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2024_3422390 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Autonomous aerial vehicles Bamboo Canopies Canopy Counting trees Datasets deep learning Feature extraction Forest management Forestry Forests Light Moso bamboo forests multiband data Networks Object recognition Phyllostachys edulis Plant cover Random forests Resource management Trees unmanned aerial vehicle (UAV) Unmanned aerial vehicles Vegetation |
title | UAV-Based Intelligent Detection of Individual Trees in Moso Bamboo Forests With Complex Canopy Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV-Based%20Intelligent%20Detection%20of%20Individual%20Trees%20in%20Moso%20Bamboo%20Forests%20With%20Complex%20Canopy%20Structure&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Lv,%20Lujin&rft.date=2024&rft.volume=17&rft.spage=11915&rft.epage=11930&rft.pages=11915-11930&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3422390&rft_dat=%3Cproquest_cross%3E3081861761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3081861761&rft_id=info:pmid/&rft_ieee_id=10584251&rft_doaj_id=oai_doaj_org_article_81e06ad403b14d3fa2b3dc8c6b71db66&rfr_iscdi=true |