Active Learning-Based Spectral-Spatial Classification for Discriminating Tree Species in Hyperspectral Images

Exploiting spectral-spatial information and reducing the number of required training samples are important for improving tree species classification performance in hyperspectral images. In this article, an active learning-based spectral-spatial classification (ALSSC) model is proposed to reduce the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.9403-9414
Hauptverfasser: Tong, Fei, Zhang, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9414
container_issue
container_start_page 9403
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 17
creator Tong, Fei
Zhang, Yun
description Exploiting spectral-spatial information and reducing the number of required training samples are important for improving tree species classification performance in hyperspectral images. In this article, an active learning-based spectral-spatial classification (ALSSC) model is proposed to reduce the demand for training samples while improving the classification performance. To improve classification performance, the proposed ALSSC employs two ways to exploit spectral-spatial information within the hyperspectral image: 1) features used in classification are extracted from multiscale superpixels; 2) the classification result is refined by guided filtering and subsequently employed as the input for the next round of classification. To reduce the demand for training samples, after each round of classification, active learning (AL) is adopted to select the most informative samples from the unlabeled testing set to enrich the training set. To validate the effectiveness of the proposed ALSSC, experiments are conducted using a tree species classification dataset collected by an airborne hyperspectral sensor. Remarkably, when compared to the state-of-the-art AL-based approach using the same number of labeled samples, the ALSSC demonstrates an accuracy improvement of 11.62%. In addition, trained with fewer labeled samples, the ALSSC outperforms state-of-the-art spectral-spatial classification methods that do not incorporate AL.
doi_str_mv 10.1109/JSTARS.2024.3394771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2024_3394771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10509752</ieee_id><doaj_id>oai_doaj_org_article_8822e1cd4d0d4123bf1a09e9503a3631</doaj_id><sourcerecordid>3056010319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-ac0f63f92e1ab53654067fae6ae56ce211726ee03f45b75241586ab26ac794a83</originalsourceid><addsrcrecordid>eNpNUUuP0zAQthBIlMIvgIMlzikev1IfS1nYokpItJytqTOpXKVJsLNI--_xbirEaTSj-R4zH2PvQawAhPv0_XDc_DyspJB6pZTTdQ0v2EKCgQqMMi_ZApxyFWihX7M3OV-EsLJ2asGumzDFP8T3hKmP_bn6jJkafhgpTAm76jDiFLHj2w5zjm0MpR163g6Jf4k5pHiNfRn1Z35MRM-4SJnHnt8_jpTyjYfvrnim_Ja9arHL9O5Wl-zX17vj9r7a__i22272VVDGTRUG0VrVOkmAJ6Os0cLWLZJFMjaQBKilJRKq1eZUG6nBrC2epMVQO41rtWS7mbcZ8OLH4hLTox8w-ufBkM4e0xRDR369lkUmNLoRjQapTi2gcOSMUKisgsL1ceYa0_D7gfLkL8ND6ot9r4SxAoQqz10yNW-FNOScqP2nCsI_ZeTnjPxTRv6WUUF9mFGRiP5DGOHKWeovCPuN5A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056010319</pqid></control><display><type>article</type><title>Active Learning-Based Spectral-Spatial Classification for Discriminating Tree Species in Hyperspectral Images</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tong, Fei ; Zhang, Yun</creator><creatorcontrib>Tong, Fei ; Zhang, Yun</creatorcontrib><description>Exploiting spectral-spatial information and reducing the number of required training samples are important for improving tree species classification performance in hyperspectral images. In this article, an active learning-based spectral-spatial classification (ALSSC) model is proposed to reduce the demand for training samples while improving the classification performance. To improve classification performance, the proposed ALSSC employs two ways to exploit spectral-spatial information within the hyperspectral image: 1) features used in classification are extracted from multiscale superpixels; 2) the classification result is refined by guided filtering and subsequently employed as the input for the next round of classification. To reduce the demand for training samples, after each round of classification, active learning (AL) is adopted to select the most informative samples from the unlabeled testing set to enrich the training set. To validate the effectiveness of the proposed ALSSC, experiments are conducted using a tree species classification dataset collected by an airborne hyperspectral sensor. Remarkably, when compared to the state-of-the-art AL-based approach using the same number of labeled samples, the ALSSC demonstrates an accuracy improvement of 11.62%. In addition, trained with fewer labeled samples, the ALSSC outperforms state-of-the-art spectral-spatial classification methods that do not incorporate AL.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3394771</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active learning (AL) ; Classification ; Exploitation ; Feature extraction ; guided filtering ; hyperspectral images ; Hyperspectral imaging ; Image classification ; Image segmentation ; Learning ; multiscale superpixels ; Plant species ; Principal component analysis ; Random forests ; Spatial data ; Spatial discrimination learning ; Species classification ; spectral–spatial information ; Training ; tree species classification ; Vegetation</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.9403-9414</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-ac0f63f92e1ab53654067fae6ae56ce211726ee03f45b75241586ab26ac794a83</cites><orcidid>0000-0001-6056-9299 ; 0000-0001-9231-0142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><title>Active Learning-Based Spectral-Spatial Classification for Discriminating Tree Species in Hyperspectral Images</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Exploiting spectral-spatial information and reducing the number of required training samples are important for improving tree species classification performance in hyperspectral images. In this article, an active learning-based spectral-spatial classification (ALSSC) model is proposed to reduce the demand for training samples while improving the classification performance. To improve classification performance, the proposed ALSSC employs two ways to exploit spectral-spatial information within the hyperspectral image: 1) features used in classification are extracted from multiscale superpixels; 2) the classification result is refined by guided filtering and subsequently employed as the input for the next round of classification. To reduce the demand for training samples, after each round of classification, active learning (AL) is adopted to select the most informative samples from the unlabeled testing set to enrich the training set. To validate the effectiveness of the proposed ALSSC, experiments are conducted using a tree species classification dataset collected by an airborne hyperspectral sensor. Remarkably, when compared to the state-of-the-art AL-based approach using the same number of labeled samples, the ALSSC demonstrates an accuracy improvement of 11.62%. In addition, trained with fewer labeled samples, the ALSSC outperforms state-of-the-art spectral-spatial classification methods that do not incorporate AL.</description><subject>Active learning (AL)</subject><subject>Classification</subject><subject>Exploitation</subject><subject>Feature extraction</subject><subject>guided filtering</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Learning</subject><subject>multiscale superpixels</subject><subject>Plant species</subject><subject>Principal component analysis</subject><subject>Random forests</subject><subject>Spatial data</subject><subject>Spatial discrimination learning</subject><subject>Species classification</subject><subject>spectral–spatial information</subject><subject>Training</subject><subject>tree species classification</subject><subject>Vegetation</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUuP0zAQthBIlMIvgIMlzikev1IfS1nYokpItJytqTOpXKVJsLNI--_xbirEaTSj-R4zH2PvQawAhPv0_XDc_DyspJB6pZTTdQ0v2EKCgQqMMi_ZApxyFWihX7M3OV-EsLJ2asGumzDFP8T3hKmP_bn6jJkafhgpTAm76jDiFLHj2w5zjm0MpR163g6Jf4k5pHiNfRn1Z35MRM-4SJnHnt8_jpTyjYfvrnim_Ja9arHL9O5Wl-zX17vj9r7a__i22272VVDGTRUG0VrVOkmAJ6Os0cLWLZJFMjaQBKilJRKq1eZUG6nBrC2epMVQO41rtWS7mbcZ8OLH4hLTox8w-ufBkM4e0xRDR369lkUmNLoRjQapTi2gcOSMUKisgsL1ceYa0_D7gfLkL8ND6ot9r4SxAoQqz10yNW-FNOScqP2nCsI_ZeTnjPxTRv6WUUF9mFGRiP5DGOHKWeovCPuN5A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tong, Fei</creator><creator>Zhang, Yun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6056-9299</orcidid><orcidid>https://orcid.org/0000-0001-9231-0142</orcidid></search><sort><creationdate>2024</creationdate><title>Active Learning-Based Spectral-Spatial Classification for Discriminating Tree Species in Hyperspectral Images</title><author>Tong, Fei ; Zhang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-ac0f63f92e1ab53654067fae6ae56ce211726ee03f45b75241586ab26ac794a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active learning (AL)</topic><topic>Classification</topic><topic>Exploitation</topic><topic>Feature extraction</topic><topic>guided filtering</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Learning</topic><topic>multiscale superpixels</topic><topic>Plant species</topic><topic>Principal component analysis</topic><topic>Random forests</topic><topic>Spatial data</topic><topic>Spatial discrimination learning</topic><topic>Species classification</topic><topic>spectral–spatial information</topic><topic>Training</topic><topic>tree species classification</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Fei</creatorcontrib><creatorcontrib>Zhang, Yun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Fei</au><au>Zhang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Learning-Based Spectral-Spatial Classification for Discriminating Tree Species in Hyperspectral Images</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>9403</spage><epage>9414</epage><pages>9403-9414</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Exploiting spectral-spatial information and reducing the number of required training samples are important for improving tree species classification performance in hyperspectral images. In this article, an active learning-based spectral-spatial classification (ALSSC) model is proposed to reduce the demand for training samples while improving the classification performance. To improve classification performance, the proposed ALSSC employs two ways to exploit spectral-spatial information within the hyperspectral image: 1) features used in classification are extracted from multiscale superpixels; 2) the classification result is refined by guided filtering and subsequently employed as the input for the next round of classification. To reduce the demand for training samples, after each round of classification, active learning (AL) is adopted to select the most informative samples from the unlabeled testing set to enrich the training set. To validate the effectiveness of the proposed ALSSC, experiments are conducted using a tree species classification dataset collected by an airborne hyperspectral sensor. Remarkably, when compared to the state-of-the-art AL-based approach using the same number of labeled samples, the ALSSC demonstrates an accuracy improvement of 11.62%. In addition, trained with fewer labeled samples, the ALSSC outperforms state-of-the-art spectral-spatial classification methods that do not incorporate AL.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3394771</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6056-9299</orcidid><orcidid>https://orcid.org/0000-0001-9231-0142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.9403-9414
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2024_3394771
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Active learning (AL)
Classification
Exploitation
Feature extraction
guided filtering
hyperspectral images
Hyperspectral imaging
Image classification
Image segmentation
Learning
multiscale superpixels
Plant species
Principal component analysis
Random forests
Spatial data
Spatial discrimination learning
Species classification
spectral–spatial information
Training
tree species classification
Vegetation
title Active Learning-Based Spectral-Spatial Classification for Discriminating Tree Species in Hyperspectral Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Learning-Based%20Spectral-Spatial%20Classification%20for%20Discriminating%20Tree%20Species%20in%20Hyperspectral%20Images&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Tong,%20Fei&rft.date=2024&rft.volume=17&rft.spage=9403&rft.epage=9414&rft.pages=9403-9414&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3394771&rft_dat=%3Cproquest_cross%3E3056010319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056010319&rft_id=info:pmid/&rft_ieee_id=10509752&rft_doaj_id=oai_doaj_org_article_8822e1cd4d0d4123bf1a09e9503a3631&rfr_iscdi=true