Common Practices and Taxonomy in Deep Multiview Fusion for Remote Sensing Applications
The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having differe...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.4797-4818 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4818 |
---|---|
container_issue | |
container_start_page | 4797 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Mena, Francisco Arenas, Diego Nuske, Marlon Dengel, Andreas |
description | The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having different types and amounts of noise due to sensor calibration or deterioration. A great variety of deep learning models have been applied to fuse the information from these multiple views, known as deep multiview (MV) or multimodal fusion learning. However, the approaches in the literature vary greatly since different terminology is used to refer to similar concepts or different illustrations are given to similar techniques. This article gathers works on MV fusion for Earth observation by focusing on the common practices and approaches used in the literature. We summarize and structure insights from several different publications concentrating on unifying points and ideas. In this manuscript, we provide a harmonized terminology while at the same time mentioning the various alternative terms that are used in literature. The topics covered by the works reviewed focus on supervised learning with the use of neural network models. We hope this review, with a long list of recent references, can support future research and lead to a unified advance in the area. |
doi_str_mv | 10.1109/JSTARS.2024.3361556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2024_3361556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10418966</ieee_id><doaj_id>oai_doaj_org_article_631077989485463cbeaed7b4ef027a28</doaj_id><sourcerecordid>2930959375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-b7183845f3f044e3cf2b5b52230bd73a216b31996509c045c24acac76a2d76f73</originalsourceid><addsrcrecordid>eNpNkU9v1DAQxS0EEkvpJ4CDJc5ZbI__xMfVQqGoqFV34Wo5zqTyahMHO0vbb09KKsRppJn33szoR8g7ztacM_vx226_ud2tBRNyDaC5UvoFWQmueMUVqJdkxS3YiksmX5M3pRwY08JYWJGf29T3aaA32YcpBizUDy3d-4c0pP6RxoF-Qhzp99Nxir8j3tOLU4mzvkuZ3mKfJqQ7HEoc7uhmHI8x-Gkel7fkVeePBc-f6xn5cfF5v_1aXV1_udxurqogmZ2qxvAaaqk66JiUCKETjWqUEMCa1oAXXDfArdWK2cCkCkL64IPRXrRGdwbOyOWS2yZ_cGOOvc-PLvno_jZSvnM-z38d0WngzBhbW1krqSE06LE1jcSOCeNFPWd9WLLGnH6dsEzukE55mM93wgKzyoJRswoWVciplIzdv62cuScYboHhnmC4Zxiz6_3iioj4n0Py2moNfwCz0oTn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930959375</pqid></control><display><type>article</type><title>Common Practices and Taxonomy in Deep Multiview Fusion for Remote Sensing Applications</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Mena, Francisco ; Arenas, Diego ; Nuske, Marlon ; Dengel, Andreas</creator><creatorcontrib>Mena, Francisco ; Arenas, Diego ; Nuske, Marlon ; Dengel, Andreas</creatorcontrib><description>The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having different types and amounts of noise due to sensor calibration or deterioration. A great variety of deep learning models have been applied to fuse the information from these multiple views, known as deep multiview (MV) or multimodal fusion learning. However, the approaches in the literature vary greatly since different terminology is used to refer to similar concepts or different illustrations are given to similar techniques. This article gathers works on MV fusion for Earth observation by focusing on the common practices and approaches used in the literature. We summarize and structure insights from several different publications concentrating on unifying points and ideas. In this manuscript, we provide a harmonized terminology while at the same time mentioning the various alternative terms that are used in literature. The topics covered by the works reviewed focus on supervised learning with the use of neural network models. We hope this review, with a long list of recent references, can support future research and lead to a unified advance in the area.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3361556</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Data fusion ; Data integration ; Data models ; Deep learning ; Earth ; Illustrations ; multimodal learning ; multiview (MV) learning ; Neural networks ; Predictive models ; Remote observing ; Remote sensing ; remote sensing (RS) ; Sensors ; Supervised learning ; Task analysis ; Taxonomy ; Terminology</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.4797-4818</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-b7183845f3f044e3cf2b5b52230bd73a216b31996509c045c24acac76a2d76f73</citedby><cites>FETCH-LOGICAL-c409t-b7183845f3f044e3cf2b5b52230bd73a216b31996509c045c24acac76a2d76f73</cites><orcidid>0000-0002-6100-8255 ; 0000-0002-5004-6571 ; 0000-0001-7829-6102 ; 0000-0002-0651-0664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Mena, Francisco</creatorcontrib><creatorcontrib>Arenas, Diego</creatorcontrib><creatorcontrib>Nuske, Marlon</creatorcontrib><creatorcontrib>Dengel, Andreas</creatorcontrib><title>Common Practices and Taxonomy in Deep Multiview Fusion for Remote Sensing Applications</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having different types and amounts of noise due to sensor calibration or deterioration. A great variety of deep learning models have been applied to fuse the information from these multiple views, known as deep multiview (MV) or multimodal fusion learning. However, the approaches in the literature vary greatly since different terminology is used to refer to similar concepts or different illustrations are given to similar techniques. This article gathers works on MV fusion for Earth observation by focusing on the common practices and approaches used in the literature. We summarize and structure insights from several different publications concentrating on unifying points and ideas. In this manuscript, we provide a harmonized terminology while at the same time mentioning the various alternative terms that are used in literature. The topics covered by the works reviewed focus on supervised learning with the use of neural network models. We hope this review, with a long list of recent references, can support future research and lead to a unified advance in the area.</description><subject>Data fusion</subject><subject>Data integration</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Earth</subject><subject>Illustrations</subject><subject>multimodal learning</subject><subject>multiview (MV) learning</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Remote observing</subject><subject>Remote sensing</subject><subject>remote sensing (RS)</subject><subject>Sensors</subject><subject>Supervised learning</subject><subject>Task analysis</subject><subject>Taxonomy</subject><subject>Terminology</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9v1DAQxS0EEkvpJ4CDJc5ZbI__xMfVQqGoqFV34Wo5zqTyahMHO0vbb09KKsRppJn33szoR8g7ztacM_vx226_ud2tBRNyDaC5UvoFWQmueMUVqJdkxS3YiksmX5M3pRwY08JYWJGf29T3aaA32YcpBizUDy3d-4c0pP6RxoF-Qhzp99Nxir8j3tOLU4mzvkuZ3mKfJqQ7HEoc7uhmHI8x-Gkel7fkVeePBc-f6xn5cfF5v_1aXV1_udxurqogmZ2qxvAaaqk66JiUCKETjWqUEMCa1oAXXDfArdWK2cCkCkL64IPRXrRGdwbOyOWS2yZ_cGOOvc-PLvno_jZSvnM-z38d0WngzBhbW1krqSE06LE1jcSOCeNFPWd9WLLGnH6dsEzukE55mM93wgKzyoJRswoWVciplIzdv62cuScYboHhnmC4Zxiz6_3iioj4n0Py2moNfwCz0oTn</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mena, Francisco</creator><creator>Arenas, Diego</creator><creator>Nuske, Marlon</creator><creator>Dengel, Andreas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6100-8255</orcidid><orcidid>https://orcid.org/0000-0002-5004-6571</orcidid><orcidid>https://orcid.org/0000-0001-7829-6102</orcidid><orcidid>https://orcid.org/0000-0002-0651-0664</orcidid></search><sort><creationdate>2024</creationdate><title>Common Practices and Taxonomy in Deep Multiview Fusion for Remote Sensing Applications</title><author>Mena, Francisco ; Arenas, Diego ; Nuske, Marlon ; Dengel, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-b7183845f3f044e3cf2b5b52230bd73a216b31996509c045c24acac76a2d76f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Data fusion</topic><topic>Data integration</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Earth</topic><topic>Illustrations</topic><topic>multimodal learning</topic><topic>multiview (MV) learning</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Remote observing</topic><topic>Remote sensing</topic><topic>remote sensing (RS)</topic><topic>Sensors</topic><topic>Supervised learning</topic><topic>Task analysis</topic><topic>Taxonomy</topic><topic>Terminology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mena, Francisco</creatorcontrib><creatorcontrib>Arenas, Diego</creatorcontrib><creatorcontrib>Nuske, Marlon</creatorcontrib><creatorcontrib>Dengel, Andreas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mena, Francisco</au><au>Arenas, Diego</au><au>Nuske, Marlon</au><au>Dengel, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Common Practices and Taxonomy in Deep Multiview Fusion for Remote Sensing Applications</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>4797</spage><epage>4818</epage><pages>4797-4818</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having different types and amounts of noise due to sensor calibration or deterioration. A great variety of deep learning models have been applied to fuse the information from these multiple views, known as deep multiview (MV) or multimodal fusion learning. However, the approaches in the literature vary greatly since different terminology is used to refer to similar concepts or different illustrations are given to similar techniques. This article gathers works on MV fusion for Earth observation by focusing on the common practices and approaches used in the literature. We summarize and structure insights from several different publications concentrating on unifying points and ideas. In this manuscript, we provide a harmonized terminology while at the same time mentioning the various alternative terms that are used in literature. The topics covered by the works reviewed focus on supervised learning with the use of neural network models. We hope this review, with a long list of recent references, can support future research and lead to a unified advance in the area.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3361556</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-6100-8255</orcidid><orcidid>https://orcid.org/0000-0002-5004-6571</orcidid><orcidid>https://orcid.org/0000-0001-7829-6102</orcidid><orcidid>https://orcid.org/0000-0002-0651-0664</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.4797-4818 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2024_3361556 |
source | DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Data fusion Data integration Data models Deep learning Earth Illustrations multimodal learning multiview (MV) learning Neural networks Predictive models Remote observing Remote sensing remote sensing (RS) Sensors Supervised learning Task analysis Taxonomy Terminology |
title | Common Practices and Taxonomy in Deep Multiview Fusion for Remote Sensing Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Common%20Practices%20and%20Taxonomy%20in%20Deep%20Multiview%20Fusion%20for%20Remote%20Sensing%20Applications&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Mena,%20Francisco&rft.date=2024&rft.volume=17&rft.spage=4797&rft.epage=4818&rft.pages=4797-4818&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3361556&rft_dat=%3Cproquest_cross%3E2930959375%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930959375&rft_id=info:pmid/&rft_ieee_id=10418966&rft_doaj_id=oai_doaj_org_article_631077989485463cbeaed7b4ef027a28&rfr_iscdi=true |