Novel Category Discovery Without Forgetting for Automatic Target Recognition
In this article, we explore a cutting-edge concept known as class incremental learning (CIL) in novel category discovery for synthetic aperture radar (SAR) targets (CNTs). This innovative task involves the challenge of identifying categories within unlabeled datasets by utilizing a provided labeled...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.4408-4420 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4420 |
---|---|
container_issue | |
container_start_page | 4408 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Huang, Heqing Gao, Fei Sun, Jinping Wang, Jun Hussain, Amir Zhou, Huiyu |
description | In this article, we explore a cutting-edge concept known as class incremental learning (CIL) in novel category discovery for synthetic aperture radar (SAR) targets (CNTs). This innovative task involves the challenge of identifying categories within unlabeled datasets by utilizing a provided labeled dataset as reference. In contrast to the conventional category discover approaches, our method introduces novel categories without relying on old labeled classes and effectively mitigates the issue of catastrophic forgetting. Specifically, to reduce the bias of the established categories toward unknown ones, CNT extracts representational information via self-supervised learning, gleaned directly from the SAR data itself to facilitate generalization. To retain the model's competence in classifying previously acquired knowledge, we employ a dual strategy incorporating the rehearsal of base category feature prototypes and the application of knowledge distillation. Our methodology integrates multiview and pseudolabeling strategies. In addition, we introduce a novel approach that focuses on enhancing the discernibility of class spaces. This strategy primarily ensures distinct separation of the unlabeled classes from base class prototypes, and imposes stringent constraints on the internal relationships among individual samples and their corresponding perspectives. To the best of our knowledge, this is the first study on category discovery in the CIL scenario. The experimental results show that our method significantly improves the performance on SAR images compared to the previous optimal method, which indicates the effectiveness of our method. |
doi_str_mv | 10.1109/JSTARS.2024.3358449 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2024_3358449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10414075</ieee_id><doaj_id>oai_doaj_org_article_d21610ac9b0c4cff868e7292f8546799</doaj_id><sourcerecordid>2927607630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-d78b30cc036057dc8d1cbe95712d405acc63bbc7fef058a0a56d76eb00888a4f3</originalsourceid><addsrcrecordid>eNpNkUtLAzEUhYMoWB-_QBcDrqfeTN7LUt8UBa24DJlMUlNqo5lU8N-bOiKu7uXmnJMDH0InGMYYgzq_e5pPHp_GDTR0TAiTlKodNGowwzVmhO2iEVZE1ZgC3UcHfb8E4I1QZIRm9_HTraqpyW4R01d1EXpbLmV7Cfk1bnJ1FdPC5RzWi8rHVE02Ob6ZHGw1N9uH6tHZuFiHHOL6CO15s-rd8e88RM9Xl_PpTT17uL6dTma1paBy3QnZErAWCAcmOis7bFunmMBNR4EZazlpWyu888CkAcN4J7hrAaSUhnpyiG6H3C6apX5P4c2kLx1N0D-HUlibVCqunO4azDEYq1qw1HovuXSiUY2XjHKhVMk6G7LeU_zYuD7rZdykdamvi0xwEJxAUZFBZVPs--T8368Y9BaBHhDoLQL9i6C4TgdXcM79c9ACQjDyDZDWguQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927607630</pqid></control><display><type>article</type><title>Novel Category Discovery Without Forgetting for Automatic Target Recognition</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Heqing ; Gao, Fei ; Sun, Jinping ; Wang, Jun ; Hussain, Amir ; Zhou, Huiyu</creator><creatorcontrib>Huang, Heqing ; Gao, Fei ; Sun, Jinping ; Wang, Jun ; Hussain, Amir ; Zhou, Huiyu</creatorcontrib><description>In this article, we explore a cutting-edge concept known as class incremental learning (CIL) in novel category discovery for synthetic aperture radar (SAR) targets (CNTs). This innovative task involves the challenge of identifying categories within unlabeled datasets by utilizing a provided labeled dataset as reference. In contrast to the conventional category discover approaches, our method introduces novel categories without relying on old labeled classes and effectively mitigates the issue of catastrophic forgetting. Specifically, to reduce the bias of the established categories toward unknown ones, CNT extracts representational information via self-supervised learning, gleaned directly from the SAR data itself to facilitate generalization. To retain the model's competence in classifying previously acquired knowledge, we employ a dual strategy incorporating the rehearsal of base category feature prototypes and the application of knowledge distillation. Our methodology integrates multiview and pseudolabeling strategies. In addition, we introduce a novel approach that focuses on enhancing the discernibility of class spaces. This strategy primarily ensures distinct separation of the unlabeled classes from base class prototypes, and imposes stringent constraints on the internal relationships among individual samples and their corresponding perspectives. To the best of our knowledge, this is the first study on category discovery in the CIL scenario. The experimental results show that our method significantly improves the performance on SAR images compared to the previous optimal method, which indicates the effectiveness of our method.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2024.3358449</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic target recognition ; Categories ; class incremental learning (CIL) ; Data models ; Datasets ; Distillation ; Knowledge acquisition ; Machine learning ; novel category discovery ; Prototypes ; Radar polarimetry ; SAR (radar) ; Self-supervised learning ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Target recognition ; Task analysis ; Training</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.4408-4420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-d78b30cc036057dc8d1cbe95712d405acc63bbc7fef058a0a56d76eb00888a4f3</citedby><cites>FETCH-LOGICAL-c409t-d78b30cc036057dc8d1cbe95712d405acc63bbc7fef058a0a56d76eb00888a4f3</cites><orcidid>0000-0001-5186-0148 ; 0000-0002-8080-082X ; 0000-0003-1634-9840 ; 0000-0002-1489-0812 ; 0000-0002-7080-3701 ; 0000-0002-7184-5057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Heqing</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Sun, Jinping</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Zhou, Huiyu</creatorcontrib><title>Novel Category Discovery Without Forgetting for Automatic Target Recognition</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In this article, we explore a cutting-edge concept known as class incremental learning (CIL) in novel category discovery for synthetic aperture radar (SAR) targets (CNTs). This innovative task involves the challenge of identifying categories within unlabeled datasets by utilizing a provided labeled dataset as reference. In contrast to the conventional category discover approaches, our method introduces novel categories without relying on old labeled classes and effectively mitigates the issue of catastrophic forgetting. Specifically, to reduce the bias of the established categories toward unknown ones, CNT extracts representational information via self-supervised learning, gleaned directly from the SAR data itself to facilitate generalization. To retain the model's competence in classifying previously acquired knowledge, we employ a dual strategy incorporating the rehearsal of base category feature prototypes and the application of knowledge distillation. Our methodology integrates multiview and pseudolabeling strategies. In addition, we introduce a novel approach that focuses on enhancing the discernibility of class spaces. This strategy primarily ensures distinct separation of the unlabeled classes from base class prototypes, and imposes stringent constraints on the internal relationships among individual samples and their corresponding perspectives. To the best of our knowledge, this is the first study on category discovery in the CIL scenario. The experimental results show that our method significantly improves the performance on SAR images compared to the previous optimal method, which indicates the effectiveness of our method.</description><subject>Automatic target recognition</subject><subject>Categories</subject><subject>class incremental learning (CIL)</subject><subject>Data models</subject><subject>Datasets</subject><subject>Distillation</subject><subject>Knowledge acquisition</subject><subject>Machine learning</subject><subject>novel category discovery</subject><subject>Prototypes</subject><subject>Radar polarimetry</subject><subject>SAR (radar)</subject><subject>Self-supervised learning</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Target recognition</subject><subject>Task analysis</subject><subject>Training</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLAzEUhYMoWB-_QBcDrqfeTN7LUt8UBa24DJlMUlNqo5lU8N-bOiKu7uXmnJMDH0InGMYYgzq_e5pPHp_GDTR0TAiTlKodNGowwzVmhO2iEVZE1ZgC3UcHfb8E4I1QZIRm9_HTraqpyW4R01d1EXpbLmV7Cfk1bnJ1FdPC5RzWi8rHVE02Ob6ZHGw1N9uH6tHZuFiHHOL6CO15s-rd8e88RM9Xl_PpTT17uL6dTma1paBy3QnZErAWCAcmOis7bFunmMBNR4EZazlpWyu888CkAcN4J7hrAaSUhnpyiG6H3C6apX5P4c2kLx1N0D-HUlibVCqunO4azDEYq1qw1HovuXSiUY2XjHKhVMk6G7LeU_zYuD7rZdykdamvi0xwEJxAUZFBZVPs--T8368Y9BaBHhDoLQL9i6C4TgdXcM79c9ACQjDyDZDWguQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Huang, Heqing</creator><creator>Gao, Fei</creator><creator>Sun, Jinping</creator><creator>Wang, Jun</creator><creator>Hussain, Amir</creator><creator>Zhou, Huiyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5186-0148</orcidid><orcidid>https://orcid.org/0000-0002-8080-082X</orcidid><orcidid>https://orcid.org/0000-0003-1634-9840</orcidid><orcidid>https://orcid.org/0000-0002-1489-0812</orcidid><orcidid>https://orcid.org/0000-0002-7080-3701</orcidid><orcidid>https://orcid.org/0000-0002-7184-5057</orcidid></search><sort><creationdate>2024</creationdate><title>Novel Category Discovery Without Forgetting for Automatic Target Recognition</title><author>Huang, Heqing ; Gao, Fei ; Sun, Jinping ; Wang, Jun ; Hussain, Amir ; Zhou, Huiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-d78b30cc036057dc8d1cbe95712d405acc63bbc7fef058a0a56d76eb00888a4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Automatic target recognition</topic><topic>Categories</topic><topic>class incremental learning (CIL)</topic><topic>Data models</topic><topic>Datasets</topic><topic>Distillation</topic><topic>Knowledge acquisition</topic><topic>Machine learning</topic><topic>novel category discovery</topic><topic>Prototypes</topic><topic>Radar polarimetry</topic><topic>SAR (radar)</topic><topic>Self-supervised learning</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Target recognition</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Heqing</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Sun, Jinping</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Hussain, Amir</creatorcontrib><creatorcontrib>Zhou, Huiyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Heqing</au><au>Gao, Fei</au><au>Sun, Jinping</au><au>Wang, Jun</au><au>Hussain, Amir</au><au>Zhou, Huiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Category Discovery Without Forgetting for Automatic Target Recognition</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>4408</spage><epage>4420</epage><pages>4408-4420</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In this article, we explore a cutting-edge concept known as class incremental learning (CIL) in novel category discovery for synthetic aperture radar (SAR) targets (CNTs). This innovative task involves the challenge of identifying categories within unlabeled datasets by utilizing a provided labeled dataset as reference. In contrast to the conventional category discover approaches, our method introduces novel categories without relying on old labeled classes and effectively mitigates the issue of catastrophic forgetting. Specifically, to reduce the bias of the established categories toward unknown ones, CNT extracts representational information via self-supervised learning, gleaned directly from the SAR data itself to facilitate generalization. To retain the model's competence in classifying previously acquired knowledge, we employ a dual strategy incorporating the rehearsal of base category feature prototypes and the application of knowledge distillation. Our methodology integrates multiview and pseudolabeling strategies. In addition, we introduce a novel approach that focuses on enhancing the discernibility of class spaces. This strategy primarily ensures distinct separation of the unlabeled classes from base class prototypes, and imposes stringent constraints on the internal relationships among individual samples and their corresponding perspectives. To the best of our knowledge, this is the first study on category discovery in the CIL scenario. The experimental results show that our method significantly improves the performance on SAR images compared to the previous optimal method, which indicates the effectiveness of our method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2024.3358449</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5186-0148</orcidid><orcidid>https://orcid.org/0000-0002-8080-082X</orcidid><orcidid>https://orcid.org/0000-0003-1634-9840</orcidid><orcidid>https://orcid.org/0000-0002-1489-0812</orcidid><orcidid>https://orcid.org/0000-0002-7080-3701</orcidid><orcidid>https://orcid.org/0000-0002-7184-5057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.4408-4420 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2024_3358449 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Automatic target recognition Categories class incremental learning (CIL) Data models Datasets Distillation Knowledge acquisition Machine learning novel category discovery Prototypes Radar polarimetry SAR (radar) Self-supervised learning Synthetic aperture radar synthetic aperture radar (SAR) Target recognition Task analysis Training |
title | Novel Category Discovery Without Forgetting for Automatic Target Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Category%20Discovery%20Without%20Forgetting%20for%20Automatic%20Target%20Recognition&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Huang,%20Heqing&rft.date=2024&rft.volume=17&rft.spage=4408&rft.epage=4420&rft.pages=4408-4420&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2024.3358449&rft_dat=%3Cproquest_cross%3E2927607630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927607630&rft_id=info:pmid/&rft_ieee_id=10414075&rft_doaj_id=oai_doaj_org_article_d21610ac9b0c4cff868e7292f8546799&rfr_iscdi=true |