Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau

High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2022, Vol.15, p.4279-4296
Hauptverfasser: Yang, Hong, Ju, Jianting, Guo, Hengliang, Qiao, Baojin, Nie, Bingkang, Zhu, Liping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4296
container_issue
container_start_page 4279
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 15
creator Yang, Hong
Ju, Jianting
Guo, Hengliang
Qiao, Baojin
Nie, Bingkang
Zhu, Liping
description High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.
doi_str_mv 10.1109/JSTARS.2022.3177227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2022_3177227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9780220</ieee_id><doaj_id>oai_doaj_org_article_6a4a70165ee142cfba5cc943d58b41dd</doaj_id><sourcerecordid>2674081430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</originalsourceid><addsrcrecordid>eNo9kU-P0zAQxS0EEmXhE-zFEucU_42d41JYKCoC0e7ZmsST1iWNi-Oy6pVPTrpZ9TSjmfd-M9Ij5JazOees-vBtvbn7tZ4LJsRccmOEMC_ITHDNC66lfklmvJJVwRVTr8mbYdgzVgpTyRn59xHy7nzAnEJDl_1fTEOIPYXe0-9wPIZ-S2NLN4-RrnfQdfGRruA3DvRhuKzW2OfQY1cIujzAFtP5yXllnuknyEBDT_MO6WJUJ-joJtSYoac_O8gIp7fkVQvdgO-e6w15uP-8WXwtVj--LBd3q6KR0uZCWG2NqqxFaKHlWEMNXknNKj02xlvPmERdy6ZkpmUaS9UIxitrrALrpbwhy4nrI-zdMYUDpLOLENzTIKatg5RD06ErQYFhvNSIXImmrUE3TaWk17ZW3PuR9X5iHVP8c8Ihu308pX5834nSKGa5kmxUyUnVpDgMCdvrVc7cJTg3Becuwbnn4EbX7eQKiHh1VMaOIib_Az-PlSs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674081430</pqid></control><display><type>article</type><title>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yang, Hong ; Ju, Jianting ; Guo, Hengliang ; Qiao, Baojin ; Nie, Bingkang ; Zhu, Liping</creator><creatorcontrib>Yang, Hong ; Ju, Jianting ; Guo, Hengliang ; Qiao, Baojin ; Nie, Bingkang ; Zhu, Liping</creatorcontrib><description>High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2022.3177227</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Analytical models ; Bathymeters ; Bathymetric mapping ; Bathymetry ; Data models ; Datasets ; Earth ; Empirical analysis ; Imagery ; Lakes ; Machine learning ; machine learning (ML) ; Mapping ; Reflectance ; Remote sensing ; remote sensing depth inversion ; Root-mean-square errors ; Satellite imagery ; Satellites ; Sentinel-2 ; shallow lake ; Spaceborne remote sensing ; Water depth ; Water storage</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.4279-4296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</citedby><cites>FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</cites><orcidid>0000-0001-5796-233X ; 0000-0001-6351-8104 ; 0000-0003-2371-0489 ; 0000-0002-4234-8748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Ju, Jianting</creatorcontrib><creatorcontrib>Guo, Hengliang</creatorcontrib><creatorcontrib>Qiao, Baojin</creatorcontrib><creatorcontrib>Nie, Bingkang</creatorcontrib><creatorcontrib>Zhu, Liping</creatorcontrib><title>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Bathymeters</subject><subject>Bathymetric mapping</subject><subject>Bathymetry</subject><subject>Data models</subject><subject>Datasets</subject><subject>Earth</subject><subject>Empirical analysis</subject><subject>Imagery</subject><subject>Lakes</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Mapping</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>remote sensing depth inversion</subject><subject>Root-mean-square errors</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sentinel-2</subject><subject>shallow lake</subject><subject>Spaceborne remote sensing</subject><subject>Water depth</subject><subject>Water storage</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU-P0zAQxS0EEmXhE-zFEucU_42d41JYKCoC0e7ZmsST1iWNi-Oy6pVPTrpZ9TSjmfd-M9Ij5JazOees-vBtvbn7tZ4LJsRccmOEMC_ITHDNC66lfklmvJJVwRVTr8mbYdgzVgpTyRn59xHy7nzAnEJDl_1fTEOIPYXe0-9wPIZ-S2NLN4-RrnfQdfGRruA3DvRhuKzW2OfQY1cIujzAFtP5yXllnuknyEBDT_MO6WJUJ-joJtSYoac_O8gIp7fkVQvdgO-e6w15uP-8WXwtVj--LBd3q6KR0uZCWG2NqqxFaKHlWEMNXknNKj02xlvPmERdy6ZkpmUaS9UIxitrrALrpbwhy4nrI-zdMYUDpLOLENzTIKatg5RD06ErQYFhvNSIXImmrUE3TaWk17ZW3PuR9X5iHVP8c8Ihu308pX5834nSKGa5kmxUyUnVpDgMCdvrVc7cJTg3Becuwbnn4EbX7eQKiHh1VMaOIib_Az-PlSs</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yang, Hong</creator><creator>Ju, Jianting</creator><creator>Guo, Hengliang</creator><creator>Qiao, Baojin</creator><creator>Nie, Bingkang</creator><creator>Zhu, Liping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5796-233X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8104</orcidid><orcidid>https://orcid.org/0000-0003-2371-0489</orcidid><orcidid>https://orcid.org/0000-0002-4234-8748</orcidid></search><sort><creationdate>2022</creationdate><title>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</title><author>Yang, Hong ; Ju, Jianting ; Guo, Hengliang ; Qiao, Baojin ; Nie, Bingkang ; Zhu, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Bathymeters</topic><topic>Bathymetric mapping</topic><topic>Bathymetry</topic><topic>Data models</topic><topic>Datasets</topic><topic>Earth</topic><topic>Empirical analysis</topic><topic>Imagery</topic><topic>Lakes</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Mapping</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>remote sensing depth inversion</topic><topic>Root-mean-square errors</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sentinel-2</topic><topic>shallow lake</topic><topic>Spaceborne remote sensing</topic><topic>Water depth</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Ju, Jianting</creatorcontrib><creatorcontrib>Guo, Hengliang</creatorcontrib><creatorcontrib>Qiao, Baojin</creatorcontrib><creatorcontrib>Nie, Bingkang</creatorcontrib><creatorcontrib>Zhu, Liping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hong</au><au>Ju, Jianting</au><au>Guo, Hengliang</au><au>Qiao, Baojin</au><au>Nie, Bingkang</au><au>Zhu, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><spage>4279</spage><epage>4296</epage><pages>4279-4296</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2022.3177227</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5796-233X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8104</orcidid><orcidid>https://orcid.org/0000-0003-2371-0489</orcidid><orcidid>https://orcid.org/0000-0002-4234-8748</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.4279-4296
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2022_3177227
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Accuracy
Analytical models
Bathymeters
Bathymetric mapping
Bathymetry
Data models
Datasets
Earth
Empirical analysis
Imagery
Lakes
Machine learning
machine learning (ML)
Mapping
Reflectance
Remote sensing
remote sensing depth inversion
Root-mean-square errors
Satellite imagery
Satellites
Sentinel-2
shallow lake
Spaceborne remote sensing
Water depth
Water storage
title Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bathymetric%20Inversion%20and%20Mapping%20of%20Two%20Shallow%20Lakes%20Using%20Sentinel-2%20Imagery%20and%20Bathymetry%20Data%20in%20the%20Central%20Tibetan%20Plateau&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yang,%20Hong&rft.date=2022&rft.volume=15&rft.spage=4279&rft.epage=4296&rft.pages=4279-4296&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2022.3177227&rft_dat=%3Cproquest_cross%3E2674081430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674081430&rft_id=info:pmid/&rft_ieee_id=9780220&rft_doaj_id=oai_doaj_org_article_6a4a70165ee142cfba5cc943d58b41dd&rfr_iscdi=true