Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau
High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performanc...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2022, Vol.15, p.4279-4296 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4296 |
---|---|
container_issue | |
container_start_page | 4279 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 15 |
creator | Yang, Hong Ju, Jianting Guo, Hengliang Qiao, Baojin Nie, Bingkang Zhu, Liping |
description | High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes. |
doi_str_mv | 10.1109/JSTARS.2022.3177227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2022_3177227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9780220</ieee_id><doaj_id>oai_doaj_org_article_6a4a70165ee142cfba5cc943d58b41dd</doaj_id><sourcerecordid>2674081430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</originalsourceid><addsrcrecordid>eNo9kU-P0zAQxS0EEmXhE-zFEucU_42d41JYKCoC0e7ZmsST1iWNi-Oy6pVPTrpZ9TSjmfd-M9Ij5JazOees-vBtvbn7tZ4LJsRccmOEMC_ITHDNC66lfklmvJJVwRVTr8mbYdgzVgpTyRn59xHy7nzAnEJDl_1fTEOIPYXe0-9wPIZ-S2NLN4-RrnfQdfGRruA3DvRhuKzW2OfQY1cIujzAFtP5yXllnuknyEBDT_MO6WJUJ-joJtSYoac_O8gIp7fkVQvdgO-e6w15uP-8WXwtVj--LBd3q6KR0uZCWG2NqqxFaKHlWEMNXknNKj02xlvPmERdy6ZkpmUaS9UIxitrrALrpbwhy4nrI-zdMYUDpLOLENzTIKatg5RD06ErQYFhvNSIXImmrUE3TaWk17ZW3PuR9X5iHVP8c8Ihu308pX5834nSKGa5kmxUyUnVpDgMCdvrVc7cJTg3Becuwbnn4EbX7eQKiHh1VMaOIib_Az-PlSs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674081430</pqid></control><display><type>article</type><title>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yang, Hong ; Ju, Jianting ; Guo, Hengliang ; Qiao, Baojin ; Nie, Bingkang ; Zhu, Liping</creator><creatorcontrib>Yang, Hong ; Ju, Jianting ; Guo, Hengliang ; Qiao, Baojin ; Nie, Bingkang ; Zhu, Liping</creatorcontrib><description>High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2022.3177227</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Analytical models ; Bathymeters ; Bathymetric mapping ; Bathymetry ; Data models ; Datasets ; Earth ; Empirical analysis ; Imagery ; Lakes ; Machine learning ; machine learning (ML) ; Mapping ; Reflectance ; Remote sensing ; remote sensing depth inversion ; Root-mean-square errors ; Satellite imagery ; Satellites ; Sentinel-2 ; shallow lake ; Spaceborne remote sensing ; Water depth ; Water storage</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.4279-4296</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</citedby><cites>FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</cites><orcidid>0000-0001-5796-233X ; 0000-0001-6351-8104 ; 0000-0003-2371-0489 ; 0000-0002-4234-8748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,2096,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Ju, Jianting</creatorcontrib><creatorcontrib>Guo, Hengliang</creatorcontrib><creatorcontrib>Qiao, Baojin</creatorcontrib><creatorcontrib>Nie, Bingkang</creatorcontrib><creatorcontrib>Zhu, Liping</creatorcontrib><title>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.</description><subject>Accuracy</subject><subject>Analytical models</subject><subject>Bathymeters</subject><subject>Bathymetric mapping</subject><subject>Bathymetry</subject><subject>Data models</subject><subject>Datasets</subject><subject>Earth</subject><subject>Empirical analysis</subject><subject>Imagery</subject><subject>Lakes</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Mapping</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>remote sensing depth inversion</subject><subject>Root-mean-square errors</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Sentinel-2</subject><subject>shallow lake</subject><subject>Spaceborne remote sensing</subject><subject>Water depth</subject><subject>Water storage</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU-P0zAQxS0EEmXhE-zFEucU_42d41JYKCoC0e7ZmsST1iWNi-Oy6pVPTrpZ9TSjmfd-M9Ij5JazOees-vBtvbn7tZ4LJsRccmOEMC_ITHDNC66lfklmvJJVwRVTr8mbYdgzVgpTyRn59xHy7nzAnEJDl_1fTEOIPYXe0-9wPIZ-S2NLN4-RrnfQdfGRruA3DvRhuKzW2OfQY1cIujzAFtP5yXllnuknyEBDT_MO6WJUJ-joJtSYoac_O8gIp7fkVQvdgO-e6w15uP-8WXwtVj--LBd3q6KR0uZCWG2NqqxFaKHlWEMNXknNKj02xlvPmERdy6ZkpmUaS9UIxitrrALrpbwhy4nrI-zdMYUDpLOLENzTIKatg5RD06ErQYFhvNSIXImmrUE3TaWk17ZW3PuR9X5iHVP8c8Ihu308pX5834nSKGa5kmxUyUnVpDgMCdvrVc7cJTg3Becuwbnn4EbX7eQKiHh1VMaOIib_Az-PlSs</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yang, Hong</creator><creator>Ju, Jianting</creator><creator>Guo, Hengliang</creator><creator>Qiao, Baojin</creator><creator>Nie, Bingkang</creator><creator>Zhu, Liping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5796-233X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8104</orcidid><orcidid>https://orcid.org/0000-0003-2371-0489</orcidid><orcidid>https://orcid.org/0000-0002-4234-8748</orcidid></search><sort><creationdate>2022</creationdate><title>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</title><author>Yang, Hong ; Ju, Jianting ; Guo, Hengliang ; Qiao, Baojin ; Nie, Bingkang ; Zhu, Liping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-285874988eafaf1ebabad435095bad7d8d003e5b3c607f05e64c20198784a8d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Analytical models</topic><topic>Bathymeters</topic><topic>Bathymetric mapping</topic><topic>Bathymetry</topic><topic>Data models</topic><topic>Datasets</topic><topic>Earth</topic><topic>Empirical analysis</topic><topic>Imagery</topic><topic>Lakes</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Mapping</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>remote sensing depth inversion</topic><topic>Root-mean-square errors</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Sentinel-2</topic><topic>shallow lake</topic><topic>Spaceborne remote sensing</topic><topic>Water depth</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Ju, Jianting</creatorcontrib><creatorcontrib>Guo, Hengliang</creatorcontrib><creatorcontrib>Qiao, Baojin</creatorcontrib><creatorcontrib>Nie, Bingkang</creatorcontrib><creatorcontrib>Zhu, Liping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Hong</au><au>Ju, Jianting</au><au>Guo, Hengliang</au><au>Qiao, Baojin</au><au>Nie, Bingkang</au><au>Zhu, Liping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2022</date><risdate>2022</risdate><volume>15</volume><spage>4279</spage><epage>4296</epage><pages>4279-4296</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>High-accuracy lake bathymetry and mapping are crucial for estimating lake water storage on the Tibetan Plateau (TP). In this article, we constructed traditional empirical (TE) models and machine learning (ML) models to compare the prediction accuracy and remote sensing bathymetric mapping performance by using Sentinel-2 satellite imagery and in situ measured water depth from Caiduochaka (CK) and QiXiang Co in the central TP. We analyzed the relationship between the band reflectance and depth and explored the universality of the model in different lakes. The results indicated that when using the TE model, the mean absolute percentage error (MAPE) varied between 14.5% and 26.5% for the test dataset at different study sites. When using the ML models, the MAPE varied between 7.6% and 18.9%, and it was the better choice overall. For the test dataset of the random forest model with the highest accuracy, in the CK with the maximum depth of approximately 16 m, the mean absolute error (MAE) and root-mean-square error (RMSE) were 0.54 and 0.89 m, and the precision was the highest with an MAE of 1.13 m and RMSE of 1.67 m in QiXiang Co with a maximum depth of approximately 28 m, whereas the portability of the model was not satisfactory. Overall, the results indicated that the ML model can obtain bathymetric maps with high accuracy, good visual performance, and reliability, outperforming the TE model. It can be used effectively for deriving accurate and updated high-resolution bathymetric maps for shallow lakes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2022.3177227</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5796-233X</orcidid><orcidid>https://orcid.org/0000-0001-6351-8104</orcidid><orcidid>https://orcid.org/0000-0003-2371-0489</orcidid><orcidid>https://orcid.org/0000-0002-4234-8748</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2022, Vol.15, p.4279-4296 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2022_3177227 |
source | DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Accuracy Analytical models Bathymeters Bathymetric mapping Bathymetry Data models Datasets Earth Empirical analysis Imagery Lakes Machine learning machine learning (ML) Mapping Reflectance Remote sensing remote sensing depth inversion Root-mean-square errors Satellite imagery Satellites Sentinel-2 shallow lake Spaceborne remote sensing Water depth Water storage |
title | Bathymetric Inversion and Mapping of Two Shallow Lakes Using Sentinel-2 Imagery and Bathymetry Data in the Central Tibetan Plateau |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bathymetric%20Inversion%20and%20Mapping%20of%20Two%20Shallow%20Lakes%20Using%20Sentinel-2%20Imagery%20and%20Bathymetry%20Data%20in%20the%20Central%20Tibetan%20Plateau&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Yang,%20Hong&rft.date=2022&rft.volume=15&rft.spage=4279&rft.epage=4296&rft.pages=4279-4296&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2022.3177227&rft_dat=%3Cproquest_cross%3E2674081430%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674081430&rft_id=info:pmid/&rft_ieee_id=9780220&rft_doaj_id=oai_doaj_org_article_6a4a70165ee142cfba5cc943d58b41dd&rfr_iscdi=true |