AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images
Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction module...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.12557-12568 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12568 |
---|---|
container_issue | |
container_start_page | 12557 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Liu, Nanqing Celik, Turgay Zhao, Tingyu Zhang, Chao Li, Heng-Chao |
description | Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results. |
doi_str_mv | 10.1109/JSTARS.2021.3128566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2021_3128566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9616403</ieee_id><doaj_id>oai_doaj_org_article_d8eed0333ba340a1b4119e3aa11c5c12</doaj_id><sourcerecordid>2610989782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</originalsourceid><addsrcrecordid>eNo9UV1rGzEQFKWFuml-QV4EfT5Xe_o4qW8mrRuXlITYfRZ7uj1zJj6l0pnQf185F_I0sMzMzu4wdgViCSDc11_b3ephu6xFDUsJtdXGvGOLGjRUoKV-zxbgpKtACfWRfcr5IISpGycX7H61_k7TN76Lz5g6_jsm4qsQTgkn4jh2fI15osTv2gOFiRdugSGOfBj5Ax1jYW1pzMO455sj7il_Zh96fMx0-YoX7M_6x-76prq9-7m5Xt1WQQk7VWQ7owVK6dDogCHY0Ii2B2udAaeswJ5qQtXJ3hjSbWgAlasbIVyndWvlBdvMvl3Eg39KwxHTPx9x8C-DmPYe0zSER_KdJeqElLJFqQRCqwAcSUSAoAPUxevL7PWU4t8T5ckf4imNJb6vTfmvdY09s-TMCinmnKh_2wrCn2vwcw3-XIN_raGormbVQERvinKkUSXSf5GMghw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610989782</pqid></control><display><type>article</type><title>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Nanqing ; Celik, Turgay ; Zhao, Tingyu ; Zhang, Chao ; Li, Heng-Chao</creator><creatorcontrib>Liu, Nanqing ; Celik, Turgay ; Zhao, Tingyu ; Zhang, Chao ; Li, Heng-Chao</creatorcontrib><description>Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3128566</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amplitude modulation ; Anchor-free method ; Aspect ratio ; Computer applications ; Detection ; Detectors ; Estimation ; Feature extraction ; Ground truth ; Imagery ; Localization ; Object detection ; Object recognition ; optical remote sensing images ; Remote sensing ; Training ; Training data</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12557-12568</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</citedby><cites>FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</cites><orcidid>0000-0002-3622-2276 ; 0000-0001-7564-4896 ; 0000-0002-9735-570X ; 0000-0001-6925-6010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><creatorcontrib>Zhao, Tingyu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><title>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.</description><subject>Amplitude modulation</subject><subject>Anchor-free method</subject><subject>Aspect ratio</subject><subject>Computer applications</subject><subject>Detection</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Ground truth</subject><subject>Imagery</subject><subject>Localization</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>optical remote sensing images</subject><subject>Remote sensing</subject><subject>Training</subject><subject>Training data</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UV1rGzEQFKWFuml-QV4EfT5Xe_o4qW8mrRuXlITYfRZ7uj1zJj6l0pnQf185F_I0sMzMzu4wdgViCSDc11_b3ephu6xFDUsJtdXGvGOLGjRUoKV-zxbgpKtACfWRfcr5IISpGycX7H61_k7TN76Lz5g6_jsm4qsQTgkn4jh2fI15osTv2gOFiRdugSGOfBj5Ax1jYW1pzMO455sj7il_Zh96fMx0-YoX7M_6x-76prq9-7m5Xt1WQQk7VWQ7owVK6dDogCHY0Ii2B2udAaeswJ5qQtXJ3hjSbWgAlasbIVyndWvlBdvMvl3Eg39KwxHTPx9x8C-DmPYe0zSER_KdJeqElLJFqQRCqwAcSUSAoAPUxevL7PWU4t8T5ckf4imNJb6vTfmvdY09s-TMCinmnKh_2wrCn2vwcw3-XIN_raGormbVQERvinKkUSXSf5GMghw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liu, Nanqing</creator><creator>Celik, Turgay</creator><creator>Zhao, Tingyu</creator><creator>Zhang, Chao</creator><creator>Li, Heng-Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3622-2276</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid></search><sort><creationdate>2021</creationdate><title>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</title><author>Liu, Nanqing ; Celik, Turgay ; Zhao, Tingyu ; Zhang, Chao ; Li, Heng-Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitude modulation</topic><topic>Anchor-free method</topic><topic>Aspect ratio</topic><topic>Computer applications</topic><topic>Detection</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Ground truth</topic><topic>Imagery</topic><topic>Localization</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>optical remote sensing images</topic><topic>Remote sensing</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><creatorcontrib>Zhao, Tingyu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Nanqing</au><au>Celik, Turgay</au><au>Zhao, Tingyu</au><au>Zhang, Chao</au><au>Li, Heng-Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>12557</spage><epage>12568</epage><pages>12557-12568</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3128566</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3622-2276</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12557-12568 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2021_3128566 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Amplitude modulation Anchor-free method Aspect ratio Computer applications Detection Detectors Estimation Feature extraction Ground truth Imagery Localization Object detection Object recognition optical remote sensing images Remote sensing Training Training data |
title | AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFDet:%20Toward%20More%20Accurate%20and%20Faster%20Object%20Detection%20in%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Liu,%20Nanqing&rft.date=2021&rft.volume=14&rft.spage=12557&rft.epage=12568&rft.pages=12557-12568&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3128566&rft_dat=%3Cproquest_cross%3E2610989782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610989782&rft_id=info:pmid/&rft_ieee_id=9616403&rft_doaj_id=oai_doaj_org_article_d8eed0333ba340a1b4119e3aa11c5c12&rfr_iscdi=true |