AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images

Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction module...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.12557-12568
Hauptverfasser: Liu, Nanqing, Celik, Turgay, Zhao, Tingyu, Zhang, Chao, Li, Heng-Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12568
container_issue
container_start_page 12557
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Liu, Nanqing
Celik, Turgay
Zhao, Tingyu
Zhang, Chao
Li, Heng-Chao
description Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.
doi_str_mv 10.1109/JSTARS.2021.3128566
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2021_3128566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9616403</ieee_id><doaj_id>oai_doaj_org_article_d8eed0333ba340a1b4119e3aa11c5c12</doaj_id><sourcerecordid>2610989782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</originalsourceid><addsrcrecordid>eNo9UV1rGzEQFKWFuml-QV4EfT5Xe_o4qW8mrRuXlITYfRZ7uj1zJj6l0pnQf185F_I0sMzMzu4wdgViCSDc11_b3ephu6xFDUsJtdXGvGOLGjRUoKV-zxbgpKtACfWRfcr5IISpGycX7H61_k7TN76Lz5g6_jsm4qsQTgkn4jh2fI15osTv2gOFiRdugSGOfBj5Ax1jYW1pzMO455sj7il_Zh96fMx0-YoX7M_6x-76prq9-7m5Xt1WQQk7VWQ7owVK6dDogCHY0Ii2B2udAaeswJ5qQtXJ3hjSbWgAlasbIVyndWvlBdvMvl3Eg39KwxHTPx9x8C-DmPYe0zSER_KdJeqElLJFqQRCqwAcSUSAoAPUxevL7PWU4t8T5ckf4imNJb6vTfmvdY09s-TMCinmnKh_2wrCn2vwcw3-XIN_raGormbVQERvinKkUSXSf5GMghw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610989782</pqid></control><display><type>article</type><title>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Nanqing ; Celik, Turgay ; Zhao, Tingyu ; Zhang, Chao ; Li, Heng-Chao</creator><creatorcontrib>Liu, Nanqing ; Celik, Turgay ; Zhao, Tingyu ; Zhang, Chao ; Li, Heng-Chao</creatorcontrib><description>Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3128566</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amplitude modulation ; Anchor-free method ; Aspect ratio ; Computer applications ; Detection ; Detectors ; Estimation ; Feature extraction ; Ground truth ; Imagery ; Localization ; Object detection ; Object recognition ; optical remote sensing images ; Remote sensing ; Training ; Training data</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12557-12568</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</citedby><cites>FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</cites><orcidid>0000-0002-3622-2276 ; 0000-0001-7564-4896 ; 0000-0002-9735-570X ; 0000-0001-6925-6010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><creatorcontrib>Zhao, Tingyu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><title>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.</description><subject>Amplitude modulation</subject><subject>Anchor-free method</subject><subject>Aspect ratio</subject><subject>Computer applications</subject><subject>Detection</subject><subject>Detectors</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Ground truth</subject><subject>Imagery</subject><subject>Localization</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>optical remote sensing images</subject><subject>Remote sensing</subject><subject>Training</subject><subject>Training data</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UV1rGzEQFKWFuml-QV4EfT5Xe_o4qW8mrRuXlITYfRZ7uj1zJj6l0pnQf185F_I0sMzMzu4wdgViCSDc11_b3ephu6xFDUsJtdXGvGOLGjRUoKV-zxbgpKtACfWRfcr5IISpGycX7H61_k7TN76Lz5g6_jsm4qsQTgkn4jh2fI15osTv2gOFiRdugSGOfBj5Ax1jYW1pzMO455sj7il_Zh96fMx0-YoX7M_6x-76prq9-7m5Xt1WQQk7VWQ7owVK6dDogCHY0Ii2B2udAaeswJ5qQtXJ3hjSbWgAlasbIVyndWvlBdvMvl3Eg39KwxHTPx9x8C-DmPYe0zSER_KdJeqElLJFqQRCqwAcSUSAoAPUxevL7PWU4t8T5ckf4imNJb6vTfmvdY09s-TMCinmnKh_2wrCn2vwcw3-XIN_raGormbVQERvinKkUSXSf5GMghw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Liu, Nanqing</creator><creator>Celik, Turgay</creator><creator>Zhao, Tingyu</creator><creator>Zhang, Chao</creator><creator>Li, Heng-Chao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3622-2276</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid></search><sort><creationdate>2021</creationdate><title>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</title><author>Liu, Nanqing ; Celik, Turgay ; Zhao, Tingyu ; Zhang, Chao ; Li, Heng-Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e8d650a339a65cacc8c70bf1889619480afe2ea4d3f66e5bc71a4927009d55b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitude modulation</topic><topic>Anchor-free method</topic><topic>Aspect ratio</topic><topic>Computer applications</topic><topic>Detection</topic><topic>Detectors</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Ground truth</topic><topic>Imagery</topic><topic>Localization</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>optical remote sensing images</topic><topic>Remote sensing</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Nanqing</creatorcontrib><creatorcontrib>Celik, Turgay</creatorcontrib><creatorcontrib>Zhao, Tingyu</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Li, Heng-Chao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Nanqing</au><au>Celik, Turgay</au><au>Zhao, Tingyu</au><au>Zhang, Chao</au><au>Li, Heng-Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>12557</spage><epage>12568</epage><pages>12557-12568</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3128566</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3622-2276</orcidid><orcidid>https://orcid.org/0000-0001-7564-4896</orcidid><orcidid>https://orcid.org/0000-0002-9735-570X</orcidid><orcidid>https://orcid.org/0000-0001-6925-6010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12557-12568
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2021_3128566
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Amplitude modulation
Anchor-free method
Aspect ratio
Computer applications
Detection
Detectors
Estimation
Feature extraction
Ground truth
Imagery
Localization
Object detection
Object recognition
optical remote sensing images
Remote sensing
Training
Training data
title AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A26%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFDet:%20Toward%20More%20Accurate%20and%20Faster%20Object%20Detection%20in%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Liu,%20Nanqing&rft.date=2021&rft.volume=14&rft.spage=12557&rft.epage=12568&rft.pages=12557-12568&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3128566&rft_dat=%3Cproquest_cross%3E2610989782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610989782&rft_id=info:pmid/&rft_ieee_id=9616403&rft_doaj_id=oai_doaj_org_article_d8eed0333ba340a1b4119e3aa11c5c12&rfr_iscdi=true