Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network
Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.8297-8315 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8315 |
---|---|
container_issue | |
container_start_page | 8297 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Lei, Runmin Zhang, Chunju Liu, Wencong Zhang, Lei Zhang, Xueying Yang, Yucheng Huang, Jianwei Li, Zhenxuan Zhou, Zhiyi |
description | Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost. |
doi_str_mv | 10.1109/JSTARS.2021.3101511 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2021_3101511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9514617</ieee_id><doaj_id>oai_doaj_org_article_a9a521a9808244149eaffbdf54ae443f</doaj_id><sourcerecordid>2568062124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</originalsourceid><addsrcrecordid>eNo9UU1P4zAQtRBIFNhfwCUS53Q9_kjjI8rCUoRAonDZizV1x1VKWmftdFf8e1yCuMyTZt57o5nH2CXwKQA3P-8XL9fPi6ngAqYSOGiAIzYRGUvQUh-zCRhpSlBcnbKzlDacV2Jm5IT9uXvvKaae3BCxK55pGwYqFrRL7W5dzLe4pqLpMKXWtw6HNuyK18_RL6K-aMLuX-j2h3YWN9infUfFIw3_Q3y7YCceu0Q_vvCcvd7evDR35cPT73lz_VA6xeuh9EAOl07XTuaqfWWENKCMR7FUKGZOrmqlPJdL6VbI84iDlDNXVcCdBJTnbD76rgJubB_bLcZ3G7C1n40Q1xbj0LqOLBrUAtDUvBZK5SWE3i9XXiskpaTPXlejVx_D3z2lwW7CPubjkhW6qvPXQKjMkiPLxZBSJP-9Fbg9BGLHQOwhEPsVSFZdjqqWiL4VRoOqYCY_ACy5h4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568062124</pqid></control><display><type>article</type><title>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lei, Runmin ; Zhang, Chunju ; Liu, Wencong ; Zhang, Lei ; Zhang, Xueying ; Yang, Yucheng ; Huang, Jianwei ; Li, Zhenxuan ; Zhou, Zhiyi</creator><creatorcontrib>Lei, Runmin ; Zhang, Chunju ; Liu, Wencong ; Zhang, Lei ; Zhang, Xueying ; Yang, Yucheng ; Huang, Jianwei ; Li, Zhenxuan ; Zhou, Zhiyi</creatorcontrib><description>Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3101511</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Capsule neural network ; Classification ; Computation ; Computational modeling ; Convolution ; convolutional neural network (CNN) ; Datasets ; Feature extraction ; hyperspectral image classification ; Image classification ; Machine learning ; Neural networks ; Parameter robustness ; Performance enhancement ; Regularization ; Remote sensing ; Routing ; Solid modeling ; Three-dimensional displays ; Training</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.8297-8315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</citedby><cites>FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</cites><orcidid>0000-0002-2686-4208 ; 0000-0003-1536-2023 ; 0000-0002-0528-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Lei, Runmin</creatorcontrib><creatorcontrib>Zhang, Chunju</creatorcontrib><creatorcontrib>Liu, Wencong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Yang, Yucheng</creatorcontrib><creatorcontrib>Huang, Jianwei</creatorcontrib><creatorcontrib>Li, Zhenxuan</creatorcontrib><creatorcontrib>Zhou, Zhiyi</creatorcontrib><title>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Capsule neural network</subject><subject>Classification</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>hyperspectral image classification</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Parameter robustness</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>Routing</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UU1P4zAQtRBIFNhfwCUS53Q9_kjjI8rCUoRAonDZizV1x1VKWmftdFf8e1yCuMyTZt57o5nH2CXwKQA3P-8XL9fPi6ngAqYSOGiAIzYRGUvQUh-zCRhpSlBcnbKzlDacV2Jm5IT9uXvvKaae3BCxK55pGwYqFrRL7W5dzLe4pqLpMKXWtw6HNuyK18_RL6K-aMLuX-j2h3YWN9infUfFIw3_Q3y7YCceu0Q_vvCcvd7evDR35cPT73lz_VA6xeuh9EAOl07XTuaqfWWENKCMR7FUKGZOrmqlPJdL6VbI84iDlDNXVcCdBJTnbD76rgJubB_bLcZ3G7C1n40Q1xbj0LqOLBrUAtDUvBZK5SWE3i9XXiskpaTPXlejVx_D3z2lwW7CPubjkhW6qvPXQKjMkiPLxZBSJP-9Fbg9BGLHQOwhEPsVSFZdjqqWiL4VRoOqYCY_ACy5h4g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lei, Runmin</creator><creator>Zhang, Chunju</creator><creator>Liu, Wencong</creator><creator>Zhang, Lei</creator><creator>Zhang, Xueying</creator><creator>Yang, Yucheng</creator><creator>Huang, Jianwei</creator><creator>Li, Zhenxuan</creator><creator>Zhou, Zhiyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2686-4208</orcidid><orcidid>https://orcid.org/0000-0003-1536-2023</orcidid><orcidid>https://orcid.org/0000-0002-0528-8328</orcidid></search><sort><creationdate>2021</creationdate><title>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</title><author>Lei, Runmin ; Zhang, Chunju ; Liu, Wencong ; Zhang, Lei ; Zhang, Xueying ; Yang, Yucheng ; Huang, Jianwei ; Li, Zhenxuan ; Zhou, Zhiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Capsule neural network</topic><topic>Classification</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>hyperspectral image classification</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Parameter robustness</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>Routing</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Runmin</creatorcontrib><creatorcontrib>Zhang, Chunju</creatorcontrib><creatorcontrib>Liu, Wencong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Yang, Yucheng</creatorcontrib><creatorcontrib>Huang, Jianwei</creatorcontrib><creatorcontrib>Li, Zhenxuan</creatorcontrib><creatorcontrib>Zhou, Zhiyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Runmin</au><au>Zhang, Chunju</au><au>Liu, Wencong</au><au>Zhang, Lei</au><au>Zhang, Xueying</au><au>Yang, Yucheng</au><au>Huang, Jianwei</au><au>Li, Zhenxuan</au><au>Zhou, Zhiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>8297</spage><epage>8315</epage><pages>8297-8315</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3101511</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2686-4208</orcidid><orcidid>https://orcid.org/0000-0003-1536-2023</orcidid><orcidid>https://orcid.org/0000-0002-0528-8328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.8297-8315 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2021_3101511 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Artificial neural networks Capsule neural network Classification Computation Computational modeling Convolution convolutional neural network (CNN) Datasets Feature extraction hyperspectral image classification Image classification Machine learning Neural networks Parameter robustness Performance enhancement Regularization Remote sensing Routing Solid modeling Three-dimensional displays Training |
title | Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T06%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Remote%20Sensing%20Image%20Classification%20Using%20Deep%20Convolutional%20Capsule%20Network&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Lei,%20Runmin&rft.date=2021&rft.volume=14&rft.spage=8297&rft.epage=8315&rft.pages=8297-8315&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3101511&rft_dat=%3Cproquest_cross%3E2568062124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568062124&rft_id=info:pmid/&rft_ieee_id=9514617&rft_doaj_id=oai_doaj_org_article_a9a521a9808244149eaffbdf54ae443f&rfr_iscdi=true |