Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.8297-8315
Hauptverfasser: Lei, Runmin, Zhang, Chunju, Liu, Wencong, Zhang, Lei, Zhang, Xueying, Yang, Yucheng, Huang, Jianwei, Li, Zhenxuan, Zhou, Zhiyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8315
container_issue
container_start_page 8297
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Lei, Runmin
Zhang, Chunju
Liu, Wencong
Zhang, Lei
Zhang, Xueying
Yang, Yucheng
Huang, Jianwei
Li, Zhenxuan
Zhou, Zhiyi
description Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost.
doi_str_mv 10.1109/JSTARS.2021.3101511
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2021_3101511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9514617</ieee_id><doaj_id>oai_doaj_org_article_a9a521a9808244149eaffbdf54ae443f</doaj_id><sourcerecordid>2568062124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</originalsourceid><addsrcrecordid>eNo9UU1P4zAQtRBIFNhfwCUS53Q9_kjjI8rCUoRAonDZizV1x1VKWmftdFf8e1yCuMyTZt57o5nH2CXwKQA3P-8XL9fPi6ngAqYSOGiAIzYRGUvQUh-zCRhpSlBcnbKzlDacV2Jm5IT9uXvvKaae3BCxK55pGwYqFrRL7W5dzLe4pqLpMKXWtw6HNuyK18_RL6K-aMLuX-j2h3YWN9infUfFIw3_Q3y7YCceu0Q_vvCcvd7evDR35cPT73lz_VA6xeuh9EAOl07XTuaqfWWENKCMR7FUKGZOrmqlPJdL6VbI84iDlDNXVcCdBJTnbD76rgJubB_bLcZ3G7C1n40Q1xbj0LqOLBrUAtDUvBZK5SWE3i9XXiskpaTPXlejVx_D3z2lwW7CPubjkhW6qvPXQKjMkiPLxZBSJP-9Fbg9BGLHQOwhEPsVSFZdjqqWiL4VRoOqYCY_ACy5h4g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2568062124</pqid></control><display><type>article</type><title>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lei, Runmin ; Zhang, Chunju ; Liu, Wencong ; Zhang, Lei ; Zhang, Xueying ; Yang, Yucheng ; Huang, Jianwei ; Li, Zhenxuan ; Zhou, Zhiyi</creator><creatorcontrib>Lei, Runmin ; Zhang, Chunju ; Liu, Wencong ; Zhang, Lei ; Zhang, Xueying ; Yang, Yucheng ; Huang, Jianwei ; Li, Zhenxuan ; Zhou, Zhiyi</creatorcontrib><description>Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3101511</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Capsule neural network ; Classification ; Computation ; Computational modeling ; Convolution ; convolutional neural network (CNN) ; Datasets ; Feature extraction ; hyperspectral image classification ; Image classification ; Machine learning ; Neural networks ; Parameter robustness ; Performance enhancement ; Regularization ; Remote sensing ; Routing ; Solid modeling ; Three-dimensional displays ; Training</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.8297-8315</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</citedby><cites>FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</cites><orcidid>0000-0002-2686-4208 ; 0000-0003-1536-2023 ; 0000-0002-0528-8328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Lei, Runmin</creatorcontrib><creatorcontrib>Zhang, Chunju</creatorcontrib><creatorcontrib>Liu, Wencong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Yang, Yucheng</creatorcontrib><creatorcontrib>Huang, Jianwei</creatorcontrib><creatorcontrib>Li, Zhenxuan</creatorcontrib><creatorcontrib>Zhou, Zhiyi</creatorcontrib><title>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Capsule neural network</subject><subject>Classification</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>hyperspectral image classification</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Parameter robustness</subject><subject>Performance enhancement</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>Routing</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>Training</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UU1P4zAQtRBIFNhfwCUS53Q9_kjjI8rCUoRAonDZizV1x1VKWmftdFf8e1yCuMyTZt57o5nH2CXwKQA3P-8XL9fPi6ngAqYSOGiAIzYRGUvQUh-zCRhpSlBcnbKzlDacV2Jm5IT9uXvvKaae3BCxK55pGwYqFrRL7W5dzLe4pqLpMKXWtw6HNuyK18_RL6K-aMLuX-j2h3YWN9infUfFIw3_Q3y7YCceu0Q_vvCcvd7evDR35cPT73lz_VA6xeuh9EAOl07XTuaqfWWENKCMR7FUKGZOrmqlPJdL6VbI84iDlDNXVcCdBJTnbD76rgJubB_bLcZ3G7C1n40Q1xbj0LqOLBrUAtDUvBZK5SWE3i9XXiskpaTPXlejVx_D3z2lwW7CPubjkhW6qvPXQKjMkiPLxZBSJP-9Fbg9BGLHQOwhEPsVSFZdjqqWiL4VRoOqYCY_ACy5h4g</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Lei, Runmin</creator><creator>Zhang, Chunju</creator><creator>Liu, Wencong</creator><creator>Zhang, Lei</creator><creator>Zhang, Xueying</creator><creator>Yang, Yucheng</creator><creator>Huang, Jianwei</creator><creator>Li, Zhenxuan</creator><creator>Zhou, Zhiyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2686-4208</orcidid><orcidid>https://orcid.org/0000-0003-1536-2023</orcidid><orcidid>https://orcid.org/0000-0002-0528-8328</orcidid></search><sort><creationdate>2021</creationdate><title>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</title><author>Lei, Runmin ; Zhang, Chunju ; Liu, Wencong ; Zhang, Lei ; Zhang, Xueying ; Yang, Yucheng ; Huang, Jianwei ; Li, Zhenxuan ; Zhou, Zhiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f1ecabc58c3bc55f69239149fa2b4a27c3d844f03b3cda091401337c6610c31a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Capsule neural network</topic><topic>Classification</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>hyperspectral image classification</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Parameter robustness</topic><topic>Performance enhancement</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>Routing</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Runmin</creatorcontrib><creatorcontrib>Zhang, Chunju</creatorcontrib><creatorcontrib>Liu, Wencong</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Xueying</creatorcontrib><creatorcontrib>Yang, Yucheng</creatorcontrib><creatorcontrib>Huang, Jianwei</creatorcontrib><creatorcontrib>Li, Zhenxuan</creatorcontrib><creatorcontrib>Zhou, Zhiyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Runmin</au><au>Zhang, Chunju</au><au>Liu, Wencong</au><au>Zhang, Lei</au><au>Zhang, Xueying</au><au>Yang, Yucheng</au><au>Huang, Jianwei</au><au>Li, Zhenxuan</au><au>Zhou, Zhiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>8297</spage><epage>8315</epage><pages>8297-8315</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Deep learning models have shown excellent performance in the hyperspectral remote sensing image (HSI) classification. In particular, convolutional neural networks (CNNs) have received widespread attention because of their powerful feature-extraction ability. Recently, a capsule network (CapsNet) was introduced to boost the performance of CNNs, marking a remarkable progress in the field of HSI classification. In this article, we propose a novel deep convolutional capsule neural network (DC-CapsNet) based on spectral-spatial features to improve the performance of CapsNet in the HSI classification while significantly reducing the computation cost of the model. Specifically, a convolutional capsule layer based on the extension of dynamic routing using 3-D convolution is used to reduce the number of parameters and enhance the robustness of the learned spectral-spatial features. Furthermore, a lighter and stronger decoder network composed of deconvolutional layers as a better regularization term and capable of acquiring more spatial relationships is used to further improve the HSI classification accuracy with low computation cost. In this study, we tested the performance of the proposed model on four widely used HSI datasets: the Kennedy Space Center, Indian Pines, Pavia University, and Salinas datasets. We found that the DC-CapsNet achieved high classification accuracy with limited training samples and effectively reduced the computation cost.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3101511</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2686-4208</orcidid><orcidid>https://orcid.org/0000-0003-1536-2023</orcidid><orcidid>https://orcid.org/0000-0002-0528-8328</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.8297-8315
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2021_3101511
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Artificial neural networks
Capsule neural network
Classification
Computation
Computational modeling
Convolution
convolutional neural network (CNN)
Datasets
Feature extraction
hyperspectral image classification
Image classification
Machine learning
Neural networks
Parameter robustness
Performance enhancement
Regularization
Remote sensing
Routing
Solid modeling
Three-dimensional displays
Training
title Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T06%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Remote%20Sensing%20Image%20Classification%20Using%20Deep%20Convolutional%20Capsule%20Network&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Lei,%20Runmin&rft.date=2021&rft.volume=14&rft.spage=8297&rft.epage=8315&rft.pages=8297-8315&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3101511&rft_dat=%3Cproquest_cross%3E2568062124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2568062124&rft_id=info:pmid/&rft_ieee_id=9514617&rft_doaj_id=oai_doaj_org_article_a9a521a9808244149eaffbdf54ae443f&rfr_iscdi=true