Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach
Global navigation satellite system-reflectometry (GNSS-R) can retrieve Earth's surface parameters, such as soil moisture (SM) using the reflected signals from GNSS constellations with advantages of noncontact, all-weather, real-time, and continuity, particularly the space-borne cyclone GNSS (CY...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.4879-4893 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4893 |
---|---|
container_issue | |
container_start_page | 4879 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Jia, Yan Jin, Shuanggen Chen, Haolin Yan, Qingyun Savi, Patrizia Jin, Yan Yuan, Yuan |
description | Global navigation satellite system-reflectometry (GNSS-R) can retrieve Earth's surface parameters, such as soil moisture (SM) using the reflected signals from GNSS constellations with advantages of noncontact, all-weather, real-time, and continuity, particularly the space-borne cyclone GNSS (CYGNSS) mission. However, the accuracy and efficiency of SM estimation from CYGNSS still need to improve. In this article, the global SM is estimated using machine learning (ML) regression aided by a preclassification strategy. The total observations are classified by land types and corresponding subsets are built for constructing ML regression submodels. Ten-fold cross-validation technique is adopted. The overall performance of SM estimation with/without preclassification is compared, and the results show that the SM estimations using different ML algorithms all have substantial improvement with the preclassification strategy. Then, the optimal XGBoost predicted model with root-mean-square error (RMSE) of 0.052 cm 3 /cm 3 is adopted. In addition, the satisfactory daily and seasonal SM prediction outcomes with an overall correlation coefficient value of 0.86 and an RMSE value of 0.056 cm 3 /cm 3 are achieved at a global scale, respectively. Furthermore, the extensive temporal and spatial variations of CYGNSS SM predictions are evaluated. It shows that the reflectivity plays a main role among the predictors in SM estimation, and the next is vegetation. In some extremely dry places, the roughness may become more important. The value of SM is positively correlated with RMSE and also another limit condition that will constrain the variation of predictors, thus affecting correlation coefficient R and RMSE. Also, we compare both SMAP and CYGNSS SM predictions against in situ SM measurements from 301 stations. Similar low-median unbiased RMSEs are obtained, and the daily averaged CYGNSS-based SM against the in situ networks is 0.049 cm 3 /cm 3 . The presented approach succeeds in providing SM estimation at a global scale with employing the least ancillary data with superior results and this article reveals the spatio-temporal heterogeneity for SM estimation using CYGNSS data. |
doi_str_mv | 10.1109/JSTARS.2021.3076470 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2021_3076470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419719</ieee_id><doaj_id>oai_doaj_org_article_2e642fcfcf954df1b4ebd31b03e81dcd</doaj_id><sourcerecordid>2533491316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-96db4f82be12507d0227bd229e316234836cda0676b97dcd7ef39ff6b1af85623</originalsourceid><addsrcrecordid>eNo9kV9v0zAUxS0EEmXwCfZiiecU_4sdP1bVGEMdoKUT4slynOvOVRoHO33Yt8cl0-QHS8fn_HyvDkLXlKwpJfrL93a_eWjXjDC65kRJocgbtGK0phWtef0WrajmuqKCiPfoQ85HQiRTmq_Q8x5OU0x2qNrJzsEOuI1hwPcx5PmcAN_kOZzKQxyxT_GEt39uf7QtfsxhPOB7657CCHgHNo0X4QEOCXK-uH-H-Qlb_CuBG2yRfHALZjNNKZbgR_TO2yHDp5f7Cj1-vdlvv1W7n7d3282ucoI0c6Vl3wnfsA4oq4nqCWOq6xnTwKlkXDRcut4SqWSnVe96BZ5r72VHrW_q4rhCdwu3j_ZoplTWSc8m2mD-CzEdjE1zcAMYBlIw78rRteg97QR0Pacd4dDQwi6szwurrPD3DHk2x3hOYxnfsJpzoWkZqrj44nIp5pzAv_5Kibn0ZZa-zKUv89JXSV0vqQAArwktqFalvH9f45Mh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533491316</pqid></control><display><type>article</type><title>Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jia, Yan ; Jin, Shuanggen ; Chen, Haolin ; Yan, Qingyun ; Savi, Patrizia ; Jin, Yan ; Yuan, Yuan</creator><creatorcontrib>Jia, Yan ; Jin, Shuanggen ; Chen, Haolin ; Yan, Qingyun ; Savi, Patrizia ; Jin, Yan ; Yuan, Yuan</creatorcontrib><description>Global navigation satellite system-reflectometry (GNSS-R) can retrieve Earth's surface parameters, such as soil moisture (SM) using the reflected signals from GNSS constellations with advantages of noncontact, all-weather, real-time, and continuity, particularly the space-borne cyclone GNSS (CYGNSS) mission. However, the accuracy and efficiency of SM estimation from CYGNSS still need to improve. In this article, the global SM is estimated using machine learning (ML) regression aided by a preclassification strategy. The total observations are classified by land types and corresponding subsets are built for constructing ML regression submodels. Ten-fold cross-validation technique is adopted. The overall performance of SM estimation with/without preclassification is compared, and the results show that the SM estimations using different ML algorithms all have substantial improvement with the preclassification strategy. Then, the optimal XGBoost predicted model with root-mean-square error (RMSE) of 0.052 cm 3 /cm 3 is adopted. In addition, the satisfactory daily and seasonal SM prediction outcomes with an overall correlation coefficient value of 0.86 and an RMSE value of 0.056 cm 3 /cm 3 are achieved at a global scale, respectively. Furthermore, the extensive temporal and spatial variations of CYGNSS SM predictions are evaluated. It shows that the reflectivity plays a main role among the predictors in SM estimation, and the next is vegetation. In some extremely dry places, the roughness may become more important. The value of SM is positively correlated with RMSE and also another limit condition that will constrain the variation of predictors, thus affecting correlation coefficient R and RMSE. Also, we compare both SMAP and CYGNSS SM predictions against in situ SM measurements from 301 stations. Similar low-median unbiased RMSEs are obtained, and the daily averaged CYGNSS-based SM against the in situ networks is 0.049 cm 3 /cm 3 . The presented approach succeeds in providing SM estimation at a global scale with employing the least ancillary data with superior results and this article reveals the spatio-temporal heterogeneity for SM estimation using CYGNSS data.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3076470</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Coefficient of variation ; Correlation coefficient ; Correlation coefficients ; Cyclones ; CYGNSS ; Earth surface ; Global navigation satellite system ; GNSS-Reflectometry ; Heterogeneity ; Learning algorithms ; Machine learning ; Maximum likelihood estimation ; Moisture ; Navigation ; Navigational satellites ; preclassifica- tion ; Predictions ; Reflectance ; Reflectivity ; Regression ; Root-mean-square errors ; Roughness ; SMAP ; Soil ; Soil moisture ; Spaceborne radar ; Spatial resolution ; Spatial variations ; Vegetation mapping ; XGBoost</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.4879-4893</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-96db4f82be12507d0227bd229e316234836cda0676b97dcd7ef39ff6b1af85623</citedby><cites>FETCH-LOGICAL-c408t-96db4f82be12507d0227bd229e316234836cda0676b97dcd7ef39ff6b1af85623</cites><orcidid>0000-0002-8282-8105 ; 0000-0003-1860-3275 ; 0000-0001-6693-957X ; 0000-0001-9585-310X ; 0000-0002-6978-163X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Jin, Shuanggen</creatorcontrib><creatorcontrib>Chen, Haolin</creatorcontrib><creatorcontrib>Yan, Qingyun</creatorcontrib><creatorcontrib>Savi, Patrizia</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Yuan, Yuan</creatorcontrib><title>Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Global navigation satellite system-reflectometry (GNSS-R) can retrieve Earth's surface parameters, such as soil moisture (SM) using the reflected signals from GNSS constellations with advantages of noncontact, all-weather, real-time, and continuity, particularly the space-borne cyclone GNSS (CYGNSS) mission. However, the accuracy and efficiency of SM estimation from CYGNSS still need to improve. In this article, the global SM is estimated using machine learning (ML) regression aided by a preclassification strategy. The total observations are classified by land types and corresponding subsets are built for constructing ML regression submodels. Ten-fold cross-validation technique is adopted. The overall performance of SM estimation with/without preclassification is compared, and the results show that the SM estimations using different ML algorithms all have substantial improvement with the preclassification strategy. Then, the optimal XGBoost predicted model with root-mean-square error (RMSE) of 0.052 cm 3 /cm 3 is adopted. In addition, the satisfactory daily and seasonal SM prediction outcomes with an overall correlation coefficient value of 0.86 and an RMSE value of 0.056 cm 3 /cm 3 are achieved at a global scale, respectively. Furthermore, the extensive temporal and spatial variations of CYGNSS SM predictions are evaluated. It shows that the reflectivity plays a main role among the predictors in SM estimation, and the next is vegetation. In some extremely dry places, the roughness may become more important. The value of SM is positively correlated with RMSE and also another limit condition that will constrain the variation of predictors, thus affecting correlation coefficient R and RMSE. Also, we compare both SMAP and CYGNSS SM predictions against in situ SM measurements from 301 stations. Similar low-median unbiased RMSEs are obtained, and the daily averaged CYGNSS-based SM against the in situ networks is 0.049 cm 3 /cm 3 . The presented approach succeeds in providing SM estimation at a global scale with employing the least ancillary data with superior results and this article reveals the spatio-temporal heterogeneity for SM estimation using CYGNSS data.</description><subject>Algorithms</subject><subject>Coefficient of variation</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Cyclones</subject><subject>CYGNSS</subject><subject>Earth surface</subject><subject>Global navigation satellite system</subject><subject>GNSS-Reflectometry</subject><subject>Heterogeneity</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Maximum likelihood estimation</subject><subject>Moisture</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>preclassifica- tion</subject><subject>Predictions</subject><subject>Reflectance</subject><subject>Reflectivity</subject><subject>Regression</subject><subject>Root-mean-square errors</subject><subject>Roughness</subject><subject>SMAP</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Spaceborne radar</subject><subject>Spatial resolution</subject><subject>Spatial variations</subject><subject>Vegetation mapping</subject><subject>XGBoost</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kV9v0zAUxS0EEmXwCfZiiecU_4sdP1bVGEMdoKUT4slynOvOVRoHO33Yt8cl0-QHS8fn_HyvDkLXlKwpJfrL93a_eWjXjDC65kRJocgbtGK0phWtef0WrajmuqKCiPfoQ85HQiRTmq_Q8x5OU0x2qNrJzsEOuI1hwPcx5PmcAN_kOZzKQxyxT_GEt39uf7QtfsxhPOB7657CCHgHNo0X4QEOCXK-uH-H-Qlb_CuBG2yRfHALZjNNKZbgR_TO2yHDp5f7Cj1-vdlvv1W7n7d3282ucoI0c6Vl3wnfsA4oq4nqCWOq6xnTwKlkXDRcut4SqWSnVe96BZ5r72VHrW_q4rhCdwu3j_ZoplTWSc8m2mD-CzEdjE1zcAMYBlIw78rRteg97QR0Pacd4dDQwi6szwurrPD3DHk2x3hOYxnfsJpzoWkZqrj44nIp5pzAv_5Kibn0ZZa-zKUv89JXSV0vqQAArwktqFalvH9f45Mh</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Jia, Yan</creator><creator>Jin, Shuanggen</creator><creator>Chen, Haolin</creator><creator>Yan, Qingyun</creator><creator>Savi, Patrizia</creator><creator>Jin, Yan</creator><creator>Yuan, Yuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8282-8105</orcidid><orcidid>https://orcid.org/0000-0003-1860-3275</orcidid><orcidid>https://orcid.org/0000-0001-6693-957X</orcidid><orcidid>https://orcid.org/0000-0001-9585-310X</orcidid><orcidid>https://orcid.org/0000-0002-6978-163X</orcidid></search><sort><creationdate>2021</creationdate><title>Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach</title><author>Jia, Yan ; Jin, Shuanggen ; Chen, Haolin ; Yan, Qingyun ; Savi, Patrizia ; Jin, Yan ; Yuan, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-96db4f82be12507d0227bd229e316234836cda0676b97dcd7ef39ff6b1af85623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Coefficient of variation</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Cyclones</topic><topic>CYGNSS</topic><topic>Earth surface</topic><topic>Global navigation satellite system</topic><topic>GNSS-Reflectometry</topic><topic>Heterogeneity</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Maximum likelihood estimation</topic><topic>Moisture</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>preclassifica- tion</topic><topic>Predictions</topic><topic>Reflectance</topic><topic>Reflectivity</topic><topic>Regression</topic><topic>Root-mean-square errors</topic><topic>Roughness</topic><topic>SMAP</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Spaceborne radar</topic><topic>Spatial resolution</topic><topic>Spatial variations</topic><topic>Vegetation mapping</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Yan</creatorcontrib><creatorcontrib>Jin, Shuanggen</creatorcontrib><creatorcontrib>Chen, Haolin</creatorcontrib><creatorcontrib>Yan, Qingyun</creatorcontrib><creatorcontrib>Savi, Patrizia</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><creatorcontrib>Yuan, Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Yan</au><au>Jin, Shuanggen</au><au>Chen, Haolin</au><au>Yan, Qingyun</au><au>Savi, Patrizia</au><au>Jin, Yan</au><au>Yuan, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>4879</spage><epage>4893</epage><pages>4879-4893</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Global navigation satellite system-reflectometry (GNSS-R) can retrieve Earth's surface parameters, such as soil moisture (SM) using the reflected signals from GNSS constellations with advantages of noncontact, all-weather, real-time, and continuity, particularly the space-borne cyclone GNSS (CYGNSS) mission. However, the accuracy and efficiency of SM estimation from CYGNSS still need to improve. In this article, the global SM is estimated using machine learning (ML) regression aided by a preclassification strategy. The total observations are classified by land types and corresponding subsets are built for constructing ML regression submodels. Ten-fold cross-validation technique is adopted. The overall performance of SM estimation with/without preclassification is compared, and the results show that the SM estimations using different ML algorithms all have substantial improvement with the preclassification strategy. Then, the optimal XGBoost predicted model with root-mean-square error (RMSE) of 0.052 cm 3 /cm 3 is adopted. In addition, the satisfactory daily and seasonal SM prediction outcomes with an overall correlation coefficient value of 0.86 and an RMSE value of 0.056 cm 3 /cm 3 are achieved at a global scale, respectively. Furthermore, the extensive temporal and spatial variations of CYGNSS SM predictions are evaluated. It shows that the reflectivity plays a main role among the predictors in SM estimation, and the next is vegetation. In some extremely dry places, the roughness may become more important. The value of SM is positively correlated with RMSE and also another limit condition that will constrain the variation of predictors, thus affecting correlation coefficient R and RMSE. Also, we compare both SMAP and CYGNSS SM predictions against in situ SM measurements from 301 stations. Similar low-median unbiased RMSEs are obtained, and the daily averaged CYGNSS-based SM against the in situ networks is 0.049 cm 3 /cm 3 . The presented approach succeeds in providing SM estimation at a global scale with employing the least ancillary data with superior results and this article reveals the spatio-temporal heterogeneity for SM estimation using CYGNSS data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3076470</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8282-8105</orcidid><orcidid>https://orcid.org/0000-0003-1860-3275</orcidid><orcidid>https://orcid.org/0000-0001-6693-957X</orcidid><orcidid>https://orcid.org/0000-0001-9585-310X</orcidid><orcidid>https://orcid.org/0000-0002-6978-163X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.4879-4893 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2021_3076470 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Coefficient of variation Correlation coefficient Correlation coefficients Cyclones CYGNSS Earth surface Global navigation satellite system GNSS-Reflectometry Heterogeneity Learning algorithms Machine learning Maximum likelihood estimation Moisture Navigation Navigational satellites preclassifica- tion Predictions Reflectance Reflectivity Regression Root-mean-square errors Roughness SMAP Soil Soil moisture Spaceborne radar Spatial resolution Spatial variations Vegetation mapping XGBoost |
title | Temporal-Spatial Soil Moisture Estimation from CYGNSS Using Machine Learning Regression With a Preclassification Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal-Spatial%20Soil%20Moisture%20Estimation%20from%20CYGNSS%20Using%20Machine%20Learning%20Regression%20With%20a%20Preclassification%20Approach&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Jia,%20Yan&rft.date=2021&rft.volume=14&rft.spage=4879&rft.epage=4893&rft.pages=4879-4893&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3076470&rft_dat=%3Cproquest_cross%3E2533491316%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533491316&rft_id=info:pmid/&rft_ieee_id=9419719&rft_doaj_id=oai_doaj_org_article_2e642fcfcf954df1b4ebd31b03e81dcd&rfr_iscdi=true |