A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine
Spartina alterniflora (S. alterniflora) after introduced to China, has rapidly expanded along the coastline and become one of the top invasive plants in coastal wetland. While it has been well accepted that phenological information derived from multitemporal remotely sensed data improves vegetation...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.190-201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | |
container_start_page | 190 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Xu, Ronglong Zhao, Siqing Ke, Yinghai |
description | Spartina alterniflora (S. alterniflora) after introduced to China, has rapidly expanded along the coastline and become one of the top invasive plants in coastal wetland. While it has been well accepted that phenological information derived from multitemporal remotely sensed data improves vegetation mapping accuracy, previous research primarily relied on scene-based features for invasive plant mapping. In the coastal regions with frequent cloud cover such as South China coast, extracting phenological features at scene level was impossible due to lack of sufficient cloud-free imageries. In this study, we aimed to propose a simple phenological vegetation index (PVI) using pixel-level composition of Sentinel-2 observations with the assist of Google Earth Engine platform. By developing and comparing six PVIs, separability analysis showed that phenological normalized vegetation difference index (PNDVI) of S. alterniflora and other land cover types were more separable than other PVIs and single-season NDVI. Based on the PNDVI, we further proposed supervised and unsupervised Otsu thresholding methods for S. alterniflora extraction. The overall accuracies of supervised Otsu-PNDVI-thresholding method using 10-fold cross validation reached 97.84%, and that of the unsupervised Otsu-PNDVI-thresholding method reached 97.20%. Kappa Z-test statistics showed that both supervised and unsupervised Otsu-PNDVI-thresholding methods yielded statistically similar accuracies as random forest classifiers based on six PVIs, and higher accuracies than scene-based classification. The success of the unsupervised Otsu-PNDVI-thresholding method suggested that the method was practical and operational for S. alterniflora mapping and its expansion monitoring in wide area such as South China coast. |
doi_str_mv | 10.1109/JSTARS.2020.3038648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_3038648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9261946</ieee_id><doaj_id>oai_doaj_org_article_f1ff1efdcaca476e8c58ef2e94067f8b</doaj_id><sourcerecordid>2475959161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-afeadff66ab46fc05dd5a3e90e085225c99bafad475f8d85c6a4826c49286a33</originalsourceid><addsrcrecordid>eNo9kU9rGzEUxJfQQty0nyAXQc_r6r-loxvcxCWlJXZ6Fc_ap43MRtpqN6H59l13Q04Pht_MPJiqumR0yRi1X77v9uu73ZJTTpeCCqOlOasWnClWMyXUu2rBrLA1k1SeVx-G4Uip5isrFlVak1187Dskvx4w5S63L_VXGLAhv7HFEcaYE9mmBv-SkAv5AX0fUzspzzDEZyS7HsoYE5B1N2JJMXS5ALkfTtB1zu0UvJmIB7JJbUz4sXofoBvw0-u9qPbfNvurm_r25_X2an1be6nMWENAaELQGg5SB09V0ygQaClSozhX3toDBGjkSgXTGOU1SMO1l5YbDUJcVNs5tslwdH2Jj1BeXIbo_gu5tO70tu_QBRYCw9B48CBXGo1XBgNHK6leBXOYsj7PWX3Jf55wGN0xP5U0fe_41G-VZZpNlJgpX_IwFAxvrYy600Zu3sidNnKvG02uy9kVEfHNYblmVmrxD2wAj6o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475959161</pqid></control><display><type>article</type><title>A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Ronglong ; Zhao, Siqing ; Ke, Yinghai</creator><creatorcontrib>Xu, Ronglong ; Zhao, Siqing ; Ke, Yinghai</creatorcontrib><description>Spartina alterniflora (S. alterniflora) after introduced to China, has rapidly expanded along the coastline and become one of the top invasive plants in coastal wetland. While it has been well accepted that phenological information derived from multitemporal remotely sensed data improves vegetation mapping accuracy, previous research primarily relied on scene-based features for invasive plant mapping. In the coastal regions with frequent cloud cover such as South China coast, extracting phenological features at scene level was impossible due to lack of sufficient cloud-free imageries. In this study, we aimed to propose a simple phenological vegetation index (PVI) using pixel-level composition of Sentinel-2 observations with the assist of Google Earth Engine platform. By developing and comparing six PVIs, separability analysis showed that phenological normalized vegetation difference index (PNDVI) of S. alterniflora and other land cover types were more separable than other PVIs and single-season NDVI. Based on the PNDVI, we further proposed supervised and unsupervised Otsu thresholding methods for S. alterniflora extraction. The overall accuracies of supervised Otsu-PNDVI-thresholding method using 10-fold cross validation reached 97.84%, and that of the unsupervised Otsu-PNDVI-thresholding method reached 97.20%. Kappa Z-test statistics showed that both supervised and unsupervised Otsu-PNDVI-thresholding methods yielded statistically similar accuracies as random forest classifiers based on six PVIs, and higher accuracies than scene-based classification. The success of the unsupervised Otsu-PNDVI-thresholding method suggested that the method was practical and operational for S. alterniflora mapping and its expansion monitoring in wide area such as South China coast.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3038648</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Spartina\ alterniflora</tex-math> </inline-formula> </named-content> ; <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <tex-math notation="LaTeX">$Spartina\ alterniflora$</tex-math> </named-content> ; Aquatic plants ; Cloud cover ; Clouds ; Coastal zone ; Coasts ; Earth ; Feature extraction ; Google Earth Engine (GEE) ; Indexes ; Invasive plants ; invasive species ; Land cover ; Mapping ; phenological vegetation index (PVI) ; phenology ; Remote sensing ; Sea measurements ; Sentinel-2 ; Spartina alterniflora ; Statistical analysis ; Statistical methods ; Statistical tests ; Vegetation ; Vegetation index ; Vegetation mapping ; Vegetation surveys]]></subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.190-201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-afeadff66ab46fc05dd5a3e90e085225c99bafad475f8d85c6a4826c49286a33</citedby><cites>FETCH-LOGICAL-c458t-afeadff66ab46fc05dd5a3e90e085225c99bafad475f8d85c6a4826c49286a33</cites><orcidid>0000-0002-3495-8124 ; 0000-0002-1121-1378 ; 0000-0003-2838-3632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Ronglong</creatorcontrib><creatorcontrib>Zhao, Siqing</creatorcontrib><creatorcontrib>Ke, Yinghai</creatorcontrib><title>A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Spartina alterniflora (S. alterniflora) after introduced to China, has rapidly expanded along the coastline and become one of the top invasive plants in coastal wetland. While it has been well accepted that phenological information derived from multitemporal remotely sensed data improves vegetation mapping accuracy, previous research primarily relied on scene-based features for invasive plant mapping. In the coastal regions with frequent cloud cover such as South China coast, extracting phenological features at scene level was impossible due to lack of sufficient cloud-free imageries. In this study, we aimed to propose a simple phenological vegetation index (PVI) using pixel-level composition of Sentinel-2 observations with the assist of Google Earth Engine platform. By developing and comparing six PVIs, separability analysis showed that phenological normalized vegetation difference index (PNDVI) of S. alterniflora and other land cover types were more separable than other PVIs and single-season NDVI. Based on the PNDVI, we further proposed supervised and unsupervised Otsu thresholding methods for S. alterniflora extraction. The overall accuracies of supervised Otsu-PNDVI-thresholding method using 10-fold cross validation reached 97.84%, and that of the unsupervised Otsu-PNDVI-thresholding method reached 97.20%. Kappa Z-test statistics showed that both supervised and unsupervised Otsu-PNDVI-thresholding methods yielded statistically similar accuracies as random forest classifiers based on six PVIs, and higher accuracies than scene-based classification. The success of the unsupervised Otsu-PNDVI-thresholding method suggested that the method was practical and operational for S. alterniflora mapping and its expansion monitoring in wide area such as South China coast.</description><subject><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Spartina\ alterniflora</tex-math> </inline-formula> </named-content>]]></subject><subject><named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <tex-math notation="LaTeX">$Spartina\ alterniflora$</tex-math> </named-content></subject><subject>Aquatic plants</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Coastal zone</subject><subject>Coasts</subject><subject>Earth</subject><subject>Feature extraction</subject><subject>Google Earth Engine (GEE)</subject><subject>Indexes</subject><subject>Invasive plants</subject><subject>invasive species</subject><subject>Land cover</subject><subject>Mapping</subject><subject>phenological vegetation index (PVI)</subject><subject>phenology</subject><subject>Remote sensing</subject><subject>Sea measurements</subject><subject>Sentinel-2</subject><subject>Spartina alterniflora</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical tests</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Vegetation mapping</subject><subject>Vegetation surveys</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU9rGzEUxJfQQty0nyAXQc_r6r-loxvcxCWlJXZ6Fc_ap43MRtpqN6H59l13Q04Pht_MPJiqumR0yRi1X77v9uu73ZJTTpeCCqOlOasWnClWMyXUu2rBrLA1k1SeVx-G4Uip5isrFlVak1187Dskvx4w5S63L_VXGLAhv7HFEcaYE9mmBv-SkAv5AX0fUzspzzDEZyS7HsoYE5B1N2JJMXS5ALkfTtB1zu0UvJmIB7JJbUz4sXofoBvw0-u9qPbfNvurm_r25_X2an1be6nMWENAaELQGg5SB09V0ygQaClSozhX3toDBGjkSgXTGOU1SMO1l5YbDUJcVNs5tslwdH2Jj1BeXIbo_gu5tO70tu_QBRYCw9B48CBXGo1XBgNHK6leBXOYsj7PWX3Jf55wGN0xP5U0fe_41G-VZZpNlJgpX_IwFAxvrYy600Zu3sidNnKvG02uy9kVEfHNYblmVmrxD2wAj6o</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xu, Ronglong</creator><creator>Zhao, Siqing</creator><creator>Ke, Yinghai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3495-8124</orcidid><orcidid>https://orcid.org/0000-0002-1121-1378</orcidid><orcidid>https://orcid.org/0000-0003-2838-3632</orcidid></search><sort><creationdate>2021</creationdate><title>A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine</title><author>Xu, Ronglong ; Zhao, Siqing ; Ke, Yinghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-afeadff66ab46fc05dd5a3e90e085225c99bafad475f8d85c6a4826c49286a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><![CDATA[<named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Spartina\ alterniflora</tex-math> </inline-formula> </named-content>]]></topic><topic><named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <tex-math notation="LaTeX">$Spartina\ alterniflora$</tex-math> </named-content></topic><topic>Aquatic plants</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Coastal zone</topic><topic>Coasts</topic><topic>Earth</topic><topic>Feature extraction</topic><topic>Google Earth Engine (GEE)</topic><topic>Indexes</topic><topic>Invasive plants</topic><topic>invasive species</topic><topic>Land cover</topic><topic>Mapping</topic><topic>phenological vegetation index (PVI)</topic><topic>phenology</topic><topic>Remote sensing</topic><topic>Sea measurements</topic><topic>Sentinel-2</topic><topic>Spartina alterniflora</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical tests</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Vegetation mapping</topic><topic>Vegetation surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Ronglong</creatorcontrib><creatorcontrib>Zhao, Siqing</creatorcontrib><creatorcontrib>Ke, Yinghai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Ronglong</au><au>Zhao, Siqing</au><au>Ke, Yinghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>190</spage><epage>201</epage><pages>190-201</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Spartina alterniflora (S. alterniflora) after introduced to China, has rapidly expanded along the coastline and become one of the top invasive plants in coastal wetland. While it has been well accepted that phenological information derived from multitemporal remotely sensed data improves vegetation mapping accuracy, previous research primarily relied on scene-based features for invasive plant mapping. In the coastal regions with frequent cloud cover such as South China coast, extracting phenological features at scene level was impossible due to lack of sufficient cloud-free imageries. In this study, we aimed to propose a simple phenological vegetation index (PVI) using pixel-level composition of Sentinel-2 observations with the assist of Google Earth Engine platform. By developing and comparing six PVIs, separability analysis showed that phenological normalized vegetation difference index (PNDVI) of S. alterniflora and other land cover types were more separable than other PVIs and single-season NDVI. Based on the PNDVI, we further proposed supervised and unsupervised Otsu thresholding methods for S. alterniflora extraction. The overall accuracies of supervised Otsu-PNDVI-thresholding method using 10-fold cross validation reached 97.84%, and that of the unsupervised Otsu-PNDVI-thresholding method reached 97.20%. Kappa Z-test statistics showed that both supervised and unsupervised Otsu-PNDVI-thresholding methods yielded statistically similar accuracies as random forest classifiers based on six PVIs, and higher accuracies than scene-based classification. The success of the unsupervised Otsu-PNDVI-thresholding method suggested that the method was practical and operational for S. alterniflora mapping and its expansion monitoring in wide area such as South China coast.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3038648</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3495-8124</orcidid><orcidid>https://orcid.org/0000-0002-1121-1378</orcidid><orcidid>https://orcid.org/0000-0003-2838-3632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.190-201 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2020_3038648 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> Spartina\ alterniflora</tex-math> </inline-formula> </named-content> <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <tex-math notation="LaTeX">$Spartina\ alterniflora$</tex-math> </named-content> Aquatic plants Cloud cover Clouds Coastal zone Coasts Earth Feature extraction Google Earth Engine (GEE) Indexes Invasive plants invasive species Land cover Mapping phenological vegetation index (PVI) phenology Remote sensing Sea measurements Sentinel-2 Spartina alterniflora Statistical analysis Statistical methods Statistical tests Vegetation Vegetation index Vegetation mapping Vegetation surveys |
title | A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina Alterniflora Using Google Earth Engine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple%20Phenology-Based%20Vegetation%20Index%20for%20Mapping%20Invasive%20Spartina%20Alterniflora%20Using%20Google%20Earth%20Engine&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Xu,%20Ronglong&rft.date=2021&rft.volume=14&rft.spage=190&rft.epage=201&rft.pages=190-201&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3038648&rft_dat=%3Cproquest_cross%3E2475959161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475959161&rft_id=info:pmid/&rft_ieee_id=9261946&rft_doaj_id=oai_doaj_org_article_f1ff1efdcaca476e8c58ef2e94067f8b&rfr_iscdi=true |