Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint

In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5704-5718
Hauptverfasser: Han, Hongwei, Wang, Guxi, Wang, Maozhi, Miao, Jiaqing, Guo, Si, Chen, Ling, Zhang, Mingyue, Guo, Ke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5718
container_issue
container_start_page 5704
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Han, Hongwei
Wang, Guxi
Wang, Maozhi
Miao, Jiaqing
Guo, Si
Chen, Ling
Zhang, Mingyue
Guo, Ke
description In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets.
doi_str_mv 10.1109/JSTARS.2020.3021520
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_3021520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186270</ieee_id><doaj_id>oai_doaj_org_article_bdd3f929f7de4b1a969c77c9b620979d</doaj_id><sourcerecordid>2448466749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</originalsourceid><addsrcrecordid>eNo9kFtr3DAQRkVpodu0vyAvhj57O7pY9jyGpbmxtJBN-ipkaRS83Uiu5Nz-fZ045OmDYc43w2HsmMOac8Afl7vrk6vdWoCAtQTBGwEf2GpOXvNGNh_ZiqPEmitQn9mXUvYAWrQoV2xz_jxSLiO5KdtDdRPvhqch3lZ_Blv9StGl-EBP1W60uVBlo6-26bG-svFvtUmxzMwQp6_sU7CHQt_e8ojdnP683pzX299nF5uTbe0UdFPdheCVb5Tz4FHLxmPvMIAU1nYotVAQtO2tok4J2ZEljURSqR6D6x1IecQull6f7N6Mebiz-dkkO5jXQcq3xuZpcAcyvfcyoMDQelI9t6jRta3DXgvAFv3c9X3pGnP6d09lMvt0n-P8vhFKdUrrVuG8JZctl1MpmcL7VQ7mxbxZzJsX8-bN_EwdL9RARO8E8m52DvI_o5R_sA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448466749</pqid></control><display><type>article</type><title>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Han, Hongwei ; Wang, Guxi ; Wang, Maozhi ; Miao, Jiaqing ; Guo, Si ; Chen, Ling ; Zhang, Mingyue ; Guo, Ke</creator><creatorcontrib>Han, Hongwei ; Wang, Guxi ; Wang, Maozhi ; Miao, Jiaqing ; Guo, Si ; Chen, Ling ; Zhang, Mingyue ; Guo, Ke</creatorcontrib><description>In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3021520</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aliasing ; Approximation ; Coherence ; Computer simulation ; Dictionaries ; Estimation ; Hyperspectral images ; Hyperspectral imaging ; joint-sparsity regression ; Libraries ; low-rank representation (LRR) ; Multiple signal classification ; Pixels ; Sparse matrices ; sparse unmixing ; Sparsity ; weighted Schatten &lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; p&lt;/tex-math&gt; &lt;/inline-formula&gt;-norm</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5704-5718</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</citedby><cites>FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</cites><orcidid>0000-0002-1757-1833 ; 0000-0001-5740-8179 ; 0000-0001-5233-4844 ; 0000-0003-0146-7908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Hongwei</creatorcontrib><creatorcontrib>Wang, Guxi</creatorcontrib><creatorcontrib>Wang, Maozhi</creatorcontrib><creatorcontrib>Miao, Jiaqing</creatorcontrib><creatorcontrib>Guo, Si</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Zhang, Mingyue</creatorcontrib><creatorcontrib>Guo, Ke</creatorcontrib><title>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets.</description><subject>Algorithms</subject><subject>Aliasing</subject><subject>Approximation</subject><subject>Coherence</subject><subject>Computer simulation</subject><subject>Dictionaries</subject><subject>Estimation</subject><subject>Hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>joint-sparsity regression</subject><subject>Libraries</subject><subject>low-rank representation (LRR)</subject><subject>Multiple signal classification</subject><subject>Pixels</subject><subject>Sparse matrices</subject><subject>sparse unmixing</subject><subject>Sparsity</subject><subject>weighted Schatten &lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; p&lt;/tex-math&gt; &lt;/inline-formula&gt;-norm</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kFtr3DAQRkVpodu0vyAvhj57O7pY9jyGpbmxtJBN-ipkaRS83Uiu5Nz-fZ045OmDYc43w2HsmMOac8Afl7vrk6vdWoCAtQTBGwEf2GpOXvNGNh_ZiqPEmitQn9mXUvYAWrQoV2xz_jxSLiO5KdtDdRPvhqch3lZ_Blv9StGl-EBP1W60uVBlo6-26bG-svFvtUmxzMwQp6_sU7CHQt_e8ojdnP683pzX299nF5uTbe0UdFPdheCVb5Tz4FHLxmPvMIAU1nYotVAQtO2tok4J2ZEljURSqR6D6x1IecQull6f7N6Mebiz-dkkO5jXQcq3xuZpcAcyvfcyoMDQelI9t6jRta3DXgvAFv3c9X3pGnP6d09lMvt0n-P8vhFKdUrrVuG8JZctl1MpmcL7VQ7mxbxZzJsX8-bN_EwdL9RARO8E8m52DvI_o5R_sA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Han, Hongwei</creator><creator>Wang, Guxi</creator><creator>Wang, Maozhi</creator><creator>Miao, Jiaqing</creator><creator>Guo, Si</creator><creator>Chen, Ling</creator><creator>Zhang, Mingyue</creator><creator>Guo, Ke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1757-1833</orcidid><orcidid>https://orcid.org/0000-0001-5740-8179</orcidid><orcidid>https://orcid.org/0000-0001-5233-4844</orcidid><orcidid>https://orcid.org/0000-0003-0146-7908</orcidid></search><sort><creationdate>2020</creationdate><title>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</title><author>Han, Hongwei ; Wang, Guxi ; Wang, Maozhi ; Miao, Jiaqing ; Guo, Si ; Chen, Ling ; Zhang, Mingyue ; Guo, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aliasing</topic><topic>Approximation</topic><topic>Coherence</topic><topic>Computer simulation</topic><topic>Dictionaries</topic><topic>Estimation</topic><topic>Hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>joint-sparsity regression</topic><topic>Libraries</topic><topic>low-rank representation (LRR)</topic><topic>Multiple signal classification</topic><topic>Pixels</topic><topic>Sparse matrices</topic><topic>sparse unmixing</topic><topic>Sparsity</topic><topic>weighted Schatten &lt;inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; &lt;tex-math notation="LaTeX"&gt; p&lt;/tex-math&gt; &lt;/inline-formula&gt;-norm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Hongwei</creatorcontrib><creatorcontrib>Wang, Guxi</creatorcontrib><creatorcontrib>Wang, Maozhi</creatorcontrib><creatorcontrib>Miao, Jiaqing</creatorcontrib><creatorcontrib>Guo, Si</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Zhang, Mingyue</creatorcontrib><creatorcontrib>Guo, Ke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Hongwei</au><au>Wang, Guxi</au><au>Wang, Maozhi</au><au>Miao, Jiaqing</au><au>Guo, Si</au><au>Chen, Ling</au><au>Zhang, Mingyue</au><au>Guo, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5704</spage><epage>5718</epage><pages>5704-5718</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3021520</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1757-1833</orcidid><orcidid>https://orcid.org/0000-0001-5740-8179</orcidid><orcidid>https://orcid.org/0000-0001-5233-4844</orcidid><orcidid>https://orcid.org/0000-0003-0146-7908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5704-5718
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2020_3021520
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Aliasing
Approximation
Coherence
Computer simulation
Dictionaries
Estimation
Hyperspectral images
Hyperspectral imaging
joint-sparsity regression
Libraries
low-rank representation (LRR)
Multiple signal classification
Pixels
Sparse matrices
sparse unmixing
Sparsity
weighted Schatten <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> p</tex-math> </inline-formula>-norm
title Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Unmixing%20Via%20Nonconvex%20Sparse%20and%20Low-Rank%20Constraint&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Han,%20Hongwei&rft.date=2020&rft.volume=13&rft.spage=5704&rft.epage=5718&rft.pages=5704-5718&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3021520&rft_dat=%3Cproquest_cross%3E2448466749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448466749&rft_id=info:pmid/&rft_ieee_id=9186270&rft_doaj_id=oai_doaj_org_article_bdd3f929f7de4b1a969c77c9b620979d&rfr_iscdi=true