Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint
In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unm...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5704-5718 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5718 |
---|---|
container_issue | |
container_start_page | 5704 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Han, Hongwei Wang, Guxi Wang, Maozhi Miao, Jiaqing Guo, Si Chen, Ling Zhang, Mingyue Guo, Ke |
description | In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets. |
doi_str_mv | 10.1109/JSTARS.2020.3021520 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_3021520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9186270</ieee_id><doaj_id>oai_doaj_org_article_bdd3f929f7de4b1a969c77c9b620979d</doaj_id><sourcerecordid>2448466749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</originalsourceid><addsrcrecordid>eNo9kFtr3DAQRkVpodu0vyAvhj57O7pY9jyGpbmxtJBN-ipkaRS83Uiu5Nz-fZ045OmDYc43w2HsmMOac8Afl7vrk6vdWoCAtQTBGwEf2GpOXvNGNh_ZiqPEmitQn9mXUvYAWrQoV2xz_jxSLiO5KdtDdRPvhqch3lZ_Blv9StGl-EBP1W60uVBlo6-26bG-svFvtUmxzMwQp6_sU7CHQt_e8ojdnP683pzX299nF5uTbe0UdFPdheCVb5Tz4FHLxmPvMIAU1nYotVAQtO2tok4J2ZEljURSqR6D6x1IecQull6f7N6Mebiz-dkkO5jXQcq3xuZpcAcyvfcyoMDQelI9t6jRta3DXgvAFv3c9X3pGnP6d09lMvt0n-P8vhFKdUrrVuG8JZctl1MpmcL7VQ7mxbxZzJsX8-bN_EwdL9RARO8E8m52DvI_o5R_sA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448466749</pqid></control><display><type>article</type><title>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Han, Hongwei ; Wang, Guxi ; Wang, Maozhi ; Miao, Jiaqing ; Guo, Si ; Chen, Ling ; Zhang, Mingyue ; Guo, Ke</creator><creatorcontrib>Han, Hongwei ; Wang, Guxi ; Wang, Maozhi ; Miao, Jiaqing ; Guo, Si ; Chen, Ling ; Zhang, Mingyue ; Guo, Ke</creatorcontrib><description>In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3021520</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aliasing ; Approximation ; Coherence ; Computer simulation ; Dictionaries ; Estimation ; Hyperspectral images ; Hyperspectral imaging ; joint-sparsity regression ; Libraries ; low-rank representation (LRR) ; Multiple signal classification ; Pixels ; Sparse matrices ; sparse unmixing ; Sparsity ; weighted Schatten <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> p</tex-math> </inline-formula>-norm</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5704-5718</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</citedby><cites>FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</cites><orcidid>0000-0002-1757-1833 ; 0000-0001-5740-8179 ; 0000-0001-5233-4844 ; 0000-0003-0146-7908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Han, Hongwei</creatorcontrib><creatorcontrib>Wang, Guxi</creatorcontrib><creatorcontrib>Wang, Maozhi</creatorcontrib><creatorcontrib>Miao, Jiaqing</creatorcontrib><creatorcontrib>Guo, Si</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Zhang, Mingyue</creatorcontrib><creatorcontrib>Guo, Ke</creatorcontrib><title>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets.</description><subject>Algorithms</subject><subject>Aliasing</subject><subject>Approximation</subject><subject>Coherence</subject><subject>Computer simulation</subject><subject>Dictionaries</subject><subject>Estimation</subject><subject>Hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>joint-sparsity regression</subject><subject>Libraries</subject><subject>low-rank representation (LRR)</subject><subject>Multiple signal classification</subject><subject>Pixels</subject><subject>Sparse matrices</subject><subject>sparse unmixing</subject><subject>Sparsity</subject><subject>weighted Schatten <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> p</tex-math> </inline-formula>-norm</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kFtr3DAQRkVpodu0vyAvhj57O7pY9jyGpbmxtJBN-ipkaRS83Uiu5Nz-fZ045OmDYc43w2HsmMOac8Afl7vrk6vdWoCAtQTBGwEf2GpOXvNGNh_ZiqPEmitQn9mXUvYAWrQoV2xz_jxSLiO5KdtDdRPvhqch3lZ_Blv9StGl-EBP1W60uVBlo6-26bG-svFvtUmxzMwQp6_sU7CHQt_e8ojdnP683pzX299nF5uTbe0UdFPdheCVb5Tz4FHLxmPvMIAU1nYotVAQtO2tok4J2ZEljURSqR6D6x1IecQull6f7N6Mebiz-dkkO5jXQcq3xuZpcAcyvfcyoMDQelI9t6jRta3DXgvAFv3c9X3pGnP6d09lMvt0n-P8vhFKdUrrVuG8JZctl1MpmcL7VQ7mxbxZzJsX8-bN_EwdL9RARO8E8m52DvI_o5R_sA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Han, Hongwei</creator><creator>Wang, Guxi</creator><creator>Wang, Maozhi</creator><creator>Miao, Jiaqing</creator><creator>Guo, Si</creator><creator>Chen, Ling</creator><creator>Zhang, Mingyue</creator><creator>Guo, Ke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1757-1833</orcidid><orcidid>https://orcid.org/0000-0001-5740-8179</orcidid><orcidid>https://orcid.org/0000-0001-5233-4844</orcidid><orcidid>https://orcid.org/0000-0003-0146-7908</orcidid></search><sort><creationdate>2020</creationdate><title>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</title><author>Han, Hongwei ; Wang, Guxi ; Wang, Maozhi ; Miao, Jiaqing ; Guo, Si ; Chen, Ling ; Zhang, Mingyue ; Guo, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8ffd4d54cd0d9635d9bc9f032aa8936240f6aba4e84238eae69ee344b9fcbc033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Aliasing</topic><topic>Approximation</topic><topic>Coherence</topic><topic>Computer simulation</topic><topic>Dictionaries</topic><topic>Estimation</topic><topic>Hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>joint-sparsity regression</topic><topic>Libraries</topic><topic>low-rank representation (LRR)</topic><topic>Multiple signal classification</topic><topic>Pixels</topic><topic>Sparse matrices</topic><topic>sparse unmixing</topic><topic>Sparsity</topic><topic>weighted Schatten <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> p</tex-math> </inline-formula>-norm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Hongwei</creatorcontrib><creatorcontrib>Wang, Guxi</creatorcontrib><creatorcontrib>Wang, Maozhi</creatorcontrib><creatorcontrib>Miao, Jiaqing</creatorcontrib><creatorcontrib>Guo, Si</creatorcontrib><creatorcontrib>Chen, Ling</creatorcontrib><creatorcontrib>Zhang, Mingyue</creatorcontrib><creatorcontrib>Guo, Ke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Hongwei</au><au>Wang, Guxi</au><au>Wang, Maozhi</au><au>Miao, Jiaqing</au><au>Guo, Si</au><au>Chen, Ling</au><au>Zhang, Mingyue</au><au>Guo, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5704</spage><epage>5718</epage><pages>5704-5718</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>In recent years, sparse unmixing has attracted significant attention, as it can effectively avoid the bottleneck problems associated with the absence of pure pixels and the estimation of the number of endmembers in hyperspectral scenes. The joint-sparsity model has outperformed the single sparse unmixing method. However, the joint-sparsity model might cause some aliasing artifacts for the pixels on the boundaries of different constituent endmembers. To address this shortcoming, researchers have developed many unmixing algorithms based on low-rank representation, which makes good use of the global structure of data. In addition, the high mutual coherence of spectral libraries strongly affects the applicability of sparse unmixing. In this study, adopting combined constraints imposing sparsity and low rankness, a novel algorithm called nonconvex joint-sparsity and low-rank unmixing with dictionary pruning is developed In particular, we impose sparsity on the abundance matrix using the ℓ 2,p mixed norm, and we also employ the weighted Schatten p-norm instead of the convex nuclear norm as an approximation for the rank. The key parameter p is set between 0.4 and 0.6, and a good quality sparse solution is generated. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3021520</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1757-1833</orcidid><orcidid>https://orcid.org/0000-0001-5740-8179</orcidid><orcidid>https://orcid.org/0000-0001-5233-4844</orcidid><orcidid>https://orcid.org/0000-0003-0146-7908</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5704-5718 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2020_3021520 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Aliasing Approximation Coherence Computer simulation Dictionaries Estimation Hyperspectral images Hyperspectral imaging joint-sparsity regression Libraries low-rank representation (LRR) Multiple signal classification Pixels Sparse matrices sparse unmixing Sparsity weighted Schatten <inline-formula xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <tex-math notation="LaTeX"> p</tex-math> </inline-formula>-norm |
title | Hyperspectral Unmixing Via Nonconvex Sparse and Low-Rank Constraint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperspectral%20Unmixing%20Via%20Nonconvex%20Sparse%20and%20Low-Rank%20Constraint&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Han,%20Hongwei&rft.date=2020&rft.volume=13&rft.spage=5704&rft.epage=5718&rft.pages=5704-5718&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3021520&rft_dat=%3Cproquest_cross%3E2448466749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448466749&rft_id=info:pmid/&rft_ieee_id=9186270&rft_doaj_id=oai_doaj_org_article_bdd3f929f7de4b1a969c77c9b620979d&rfr_iscdi=true |