Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection

Detecting anomalous changes in remote sensing images is a challenging problem, where many approaches and techniques have been presented so far. We rely on the standard field of multivariate statistics of diagnostic measures, which are concerned about the characterization of distributions, detection...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5480-5488
Hauptverfasser: Padron-Hidalgo, Jose Antonio, Perez-Suay, Adrian, Nar, Fatih, Laparra, Valero, Camps-Valls, Gustau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5488
container_issue
container_start_page 5480
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Padron-Hidalgo, Jose Antonio
Perez-Suay, Adrian
Nar, Fatih
Laparra, Valero
Camps-Valls, Gustau
description Detecting anomalous changes in remote sensing images is a challenging problem, where many approaches and techniques have been presented so far. We rely on the standard field of multivariate statistics of diagnostic measures, which are concerned about the characterization of distributions, detection of anomalies, extreme events, and changes. One useful tool to detect multivariate anomalies is the celebrated Cook's distance. Instead of assuming a linear relationship, we present a novel kernelized version of the Cook's distance to address anomalous change detection in remote sensing images. Due to the large computational burden involved in the direct kernelization, and the lack of out-of-sample formulas, we introduce and compare both random Fourier features and Nyström implementations to approximate the solution. We study the kernel Cook's distance for anomalous change detection in a chronochrome scheme, where the anomalousness indicator comes from evaluating the statistical leverage of the residuals of regressors between time acquisitions. We illustrate the performance of all algorithms in a representative number of multispectral and very high resolution satellite images involving changes due to droughts, urbanization, wildfires, and floods. Very good results and computational efficiency confirm the validity of the approach.
doi_str_mv 10.1109/JSTARS.2020.3020913
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_3020913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9183903</ieee_id><doaj_id>oai_doaj_org_article_646f6da95a754566951378dad8dc926d</doaj_id><sourcerecordid>2447338023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-ef33e2c9c7645739f7aac62c5c3d7c6886f1a7cd61251f37b89ff2648c645be73</originalsourceid><addsrcrecordid>eNo9kc1vEzEQxVcVSITCX9CLJQ6cNtgefx6jtPRTIDXlbLneceqQ2MXeHPjv2bJVLzPS6L03T_p13RmjS8ao_XazeVjdb5accrqEaVgGJ92CM8l6JkG-6xbMgu2ZoOJD97G1HaWKawuL7sdFjCkkzCO5xZpxT9al_P7ayHlqo88BSSyV3OOhjEg2mFvKW7LK5eD35djI-snnLZJzHDGMqeRP3fvo9w0_v-7T7tf3i4f1VX_38_J6vbrrg6Bm7DECIA82aCWkBhu190HxIAMMOihjVGReh0ExLlkE_WhsjFwJEyb9I2o47a7n3KH4nXuu6eDrX1d8cv8PpW6dr2MKe3RKqKgGb6XXUkilrGSgzeAHMwTL1TBlfZmznmv5c8Q2ul051jzVd1wIDWAoh0kFsyrU0lrF-PaVUfcCwc0Q3AsE9wphcp3NroSIbw7LDFgK8A9FIYHU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447338023</pqid></control><display><type>article</type><title>Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Padron-Hidalgo, Jose Antonio ; Perez-Suay, Adrian ; Nar, Fatih ; Laparra, Valero ; Camps-Valls, Gustau</creator><creatorcontrib>Padron-Hidalgo, Jose Antonio ; Perez-Suay, Adrian ; Nar, Fatih ; Laparra, Valero ; Camps-Valls, Gustau</creatorcontrib><description>Detecting anomalous changes in remote sensing images is a challenging problem, where many approaches and techniques have been presented so far. We rely on the standard field of multivariate statistics of diagnostic measures, which are concerned about the characterization of distributions, detection of anomalies, extreme events, and changes. One useful tool to detect multivariate anomalies is the celebrated Cook's distance. Instead of assuming a linear relationship, we present a novel kernelized version of the Cook's distance to address anomalous change detection in remote sensing images. Due to the large computational burden involved in the direct kernelization, and the lack of out-of-sample formulas, we introduce and compare both random Fourier features and Nyström implementations to approximate the solution. We study the kernel Cook's distance for anomalous change detection in a chronochrome scheme, where the anomalousness indicator comes from evaluating the statistical leverage of the residuals of regressors between time acquisitions. We illustrate the performance of all algorithms in a representative number of multispectral and very high resolution satellite images involving changes due to droughts, urbanization, wildfires, and floods. Very good results and computational efficiency confirm the validity of the approach.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3020913</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Anomalies ; Anomalous change detection (ACD) ; Change detection ; Computational modeling ; Computer applications ; Cook's distance ; Detection ; Diagnostic systems ; Distance ; Drought ; Earth ; efficiency ; Image resolution ; influential points ; Kernel ; kernel methods ; Kernels ; Multivariate analysis ; Nyström method ; Predictive models ; random Fourier features ; Remote sensing ; Satellite imagery ; Satellites ; Spaceborne remote sensing ; statistical leverage ; Statistical methods ; Urbanization ; Wildfires</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5480-5488</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-ef33e2c9c7645739f7aac62c5c3d7c6886f1a7cd61251f37b89ff2648c645be73</citedby><cites>FETCH-LOGICAL-c408t-ef33e2c9c7645739f7aac62c5c3d7c6886f1a7cd61251f37b89ff2648c645be73</cites><orcidid>0000-0002-2431-2792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Padron-Hidalgo, Jose Antonio</creatorcontrib><creatorcontrib>Perez-Suay, Adrian</creatorcontrib><creatorcontrib>Nar, Fatih</creatorcontrib><creatorcontrib>Laparra, Valero</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><title>Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Detecting anomalous changes in remote sensing images is a challenging problem, where many approaches and techniques have been presented so far. We rely on the standard field of multivariate statistics of diagnostic measures, which are concerned about the characterization of distributions, detection of anomalies, extreme events, and changes. One useful tool to detect multivariate anomalies is the celebrated Cook's distance. Instead of assuming a linear relationship, we present a novel kernelized version of the Cook's distance to address anomalous change detection in remote sensing images. Due to the large computational burden involved in the direct kernelization, and the lack of out-of-sample formulas, we introduce and compare both random Fourier features and Nyström implementations to approximate the solution. We study the kernel Cook's distance for anomalous change detection in a chronochrome scheme, where the anomalousness indicator comes from evaluating the statistical leverage of the residuals of regressors between time acquisitions. We illustrate the performance of all algorithms in a representative number of multispectral and very high resolution satellite images involving changes due to droughts, urbanization, wildfires, and floods. Very good results and computational efficiency confirm the validity of the approach.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Anomalous change detection (ACD)</subject><subject>Change detection</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Cook's distance</subject><subject>Detection</subject><subject>Diagnostic systems</subject><subject>Distance</subject><subject>Drought</subject><subject>Earth</subject><subject>efficiency</subject><subject>Image resolution</subject><subject>influential points</subject><subject>Kernel</subject><subject>kernel methods</subject><subject>Kernels</subject><subject>Multivariate analysis</subject><subject>Nyström method</subject><subject>Predictive models</subject><subject>random Fourier features</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Satellites</subject><subject>Spaceborne remote sensing</subject><subject>statistical leverage</subject><subject>Statistical methods</subject><subject>Urbanization</subject><subject>Wildfires</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kc1vEzEQxVcVSITCX9CLJQ6cNtgefx6jtPRTIDXlbLneceqQ2MXeHPjv2bJVLzPS6L03T_p13RmjS8ao_XazeVjdb5accrqEaVgGJ92CM8l6JkG-6xbMgu2ZoOJD97G1HaWKawuL7sdFjCkkzCO5xZpxT9al_P7ayHlqo88BSSyV3OOhjEg2mFvKW7LK5eD35djI-snnLZJzHDGMqeRP3fvo9w0_v-7T7tf3i4f1VX_38_J6vbrrg6Bm7DECIA82aCWkBhu190HxIAMMOihjVGReh0ExLlkE_WhsjFwJEyb9I2o47a7n3KH4nXuu6eDrX1d8cv8PpW6dr2MKe3RKqKgGb6XXUkilrGSgzeAHMwTL1TBlfZmznmv5c8Q2ul051jzVd1wIDWAoh0kFsyrU0lrF-PaVUfcCwc0Q3AsE9wphcp3NroSIbw7LDFgK8A9FIYHU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Padron-Hidalgo, Jose Antonio</creator><creator>Perez-Suay, Adrian</creator><creator>Nar, Fatih</creator><creator>Laparra, Valero</creator><creator>Camps-Valls, Gustau</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2431-2792</orcidid></search><sort><creationdate>2020</creationdate><title>Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection</title><author>Padron-Hidalgo, Jose Antonio ; Perez-Suay, Adrian ; Nar, Fatih ; Laparra, Valero ; Camps-Valls, Gustau</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-ef33e2c9c7645739f7aac62c5c3d7c6886f1a7cd61251f37b89ff2648c645be73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Anomalous change detection (ACD)</topic><topic>Change detection</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Cook's distance</topic><topic>Detection</topic><topic>Diagnostic systems</topic><topic>Distance</topic><topic>Drought</topic><topic>Earth</topic><topic>efficiency</topic><topic>Image resolution</topic><topic>influential points</topic><topic>Kernel</topic><topic>kernel methods</topic><topic>Kernels</topic><topic>Multivariate analysis</topic><topic>Nyström method</topic><topic>Predictive models</topic><topic>random Fourier features</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Satellites</topic><topic>Spaceborne remote sensing</topic><topic>statistical leverage</topic><topic>Statistical methods</topic><topic>Urbanization</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Padron-Hidalgo, Jose Antonio</creatorcontrib><creatorcontrib>Perez-Suay, Adrian</creatorcontrib><creatorcontrib>Nar, Fatih</creatorcontrib><creatorcontrib>Laparra, Valero</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Padron-Hidalgo, Jose Antonio</au><au>Perez-Suay, Adrian</au><au>Nar, Fatih</au><au>Laparra, Valero</au><au>Camps-Valls, Gustau</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5480</spage><epage>5488</epage><pages>5480-5488</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Detecting anomalous changes in remote sensing images is a challenging problem, where many approaches and techniques have been presented so far. We rely on the standard field of multivariate statistics of diagnostic measures, which are concerned about the characterization of distributions, detection of anomalies, extreme events, and changes. One useful tool to detect multivariate anomalies is the celebrated Cook's distance. Instead of assuming a linear relationship, we present a novel kernelized version of the Cook's distance to address anomalous change detection in remote sensing images. Due to the large computational burden involved in the direct kernelization, and the lack of out-of-sample formulas, we introduce and compare both random Fourier features and Nyström implementations to approximate the solution. We study the kernel Cook's distance for anomalous change detection in a chronochrome scheme, where the anomalousness indicator comes from evaluating the statistical leverage of the residuals of regressors between time acquisitions. We illustrate the performance of all algorithms in a representative number of multispectral and very high resolution satellite images involving changes due to droughts, urbanization, wildfires, and floods. Very good results and computational efficiency confirm the validity of the approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3020913</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2431-2792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5480-5488
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2020_3020913
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Anomalies
Anomalous change detection (ACD)
Change detection
Computational modeling
Computer applications
Cook's distance
Detection
Diagnostic systems
Distance
Drought
Earth
efficiency
Image resolution
influential points
Kernel
kernel methods
Kernels
Multivariate analysis
Nyström method
Predictive models
random Fourier features
Remote sensing
Satellite imagery
Satellites
Spaceborne remote sensing
statistical leverage
Statistical methods
Urbanization
Wildfires
title Efficient Kernel Cook's Distance for Remote Sensing Anomalous Change Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Kernel%20Cook's%20Distance%20for%20Remote%20Sensing%20Anomalous%20Change%20Detection&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Padron-Hidalgo,%20Jose%20Antonio&rft.date=2020&rft.volume=13&rft.spage=5480&rft.epage=5488&rft.pages=5480-5488&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3020913&rft_dat=%3Cproquest_cross%3E2447338023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447338023&rft_id=info:pmid/&rft_ieee_id=9183903&rft_doaj_id=oai_doaj_org_article_646f6da95a754566951378dad8dc926d&rfr_iscdi=true