Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California
Satellite-based active fire (AF) products provide opportunities for constructing continuous fire progression maps, a critical dataset needed for improved fire behavior modeling and fire management. This study aims to investigate the geospatial interpolation techniques in mapping the daily fire progr...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5102-5114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5114 |
---|---|
container_issue | |
container_start_page | 5102 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Scaduto, Erica Chen, Bin Jin, Yufang |
description | Satellite-based active fire (AF) products provide opportunities for constructing continuous fire progression maps, a critical dataset needed for improved fire behavior modeling and fire management. This study aims to investigate the geospatial interpolation techniques in mapping the daily fire progression and assess the accuracy of the derived maps from multisensor AF products. We focused on 42 large wildfires greater than 5000 acres in Northern California from 2017 to 2018, where the USDA Forest Service National Infrared Operations (NIROPS) daily fire perimeters were available for the comparison. The standard AF products from the moderate resolution imaging spectroradiometer (MODIS), the visible infrared imaging radiometer suite (VIIRS), and the combined products were used as inputs. We found that the estimated fire progression areas generated by the natural neighbor method with the combined MODIS and VIIRS AF input layers performed the best, with R 2 of 0.7 ± 0.31 and RMSE of 1.25 ± 1.21 (10 3 acres) at a daily time scale; the accuracy was higher when assessed at a two-day rolling window, e.g., R 2 of 0.83 ± 0.20 and RMSE of 0.74 ± 0.94 (10 3 acres). A relatively higher spatial accuracy was found using the 375 m VIIRS AF product as inputs, with a kappa score of 0.55 and an overall accuracy score of 0.59, when interpolated with the natural neighbor method. Furthermore, the locational pixel-based comparison showed 61% matched to a single day and an additional 25% explained within ±1 day of the estimation, revealing greater confidence in fire progression estimation at a two-day moving time interval. This study demonstrated the efficacy and potential improvements of daily fire progression mapping at local and regional scales. |
doi_str_mv | 10.1109/JSTARS.2020.3019261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_3019261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9177265</ieee_id><doaj_id>oai_doaj_org_article_097da01d48df417cbe70c22e62a17ae0</doaj_id><sourcerecordid>2444611200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5656bd5d067b77b00d81f3e05e0fae588fd07e6a7d4aadae5a657bdfa1f5e3623</originalsourceid><addsrcrecordid>eNo9kU9v1DAQxSMEEkvhE_RiiXOWGSe2E27LikKr5Y_YcrYm8WTrJRsHO0Xi2zfbVD2N9Ob93oz0suwSYY0I9Yeb_e3m134tQcK6AKylxhfZSqLCHFWhXmYrrIs6xxLK19mblI4AWpq6WGV_9jRx3_uJ80-U2IkrH1n8jOEQOSUfBvGNxtEPh49iI7bhNEa-4yH5fyw2Kc2WEw-T6EIUO4oHfsST8IP4HuJ0x3EQW-r9vB88vc1eddQnfvc0L7LfV59vt1_z3Y8v19vNLm9LqKZcaaUbpxxo0xjTALgKu4JBMXTEqqo6B4Y1GVcSuVkhrUzjOsJOcaFlcZFdL7ku0NGO0Z8o_reBvH0UQjxYipNve7ZQG0eArqxcV6JpGzbQSslaEhpimLPeL1ljDH_vOU32GO7jML9vZVmWGlHC2VUsrjaGlCJ3z1cR7LkhuzRkzw3Zp4Zm6nKhPDM_EzUaI7UqHgCLw44B</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444611200</pqid></control><display><type>article</type><title>Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Scaduto, Erica ; Chen, Bin ; Jin, Yufang</creator><creatorcontrib>Scaduto, Erica ; Chen, Bin ; Jin, Yufang</creatorcontrib><description>Satellite-based active fire (AF) products provide opportunities for constructing continuous fire progression maps, a critical dataset needed for improved fire behavior modeling and fire management. This study aims to investigate the geospatial interpolation techniques in mapping the daily fire progression and assess the accuracy of the derived maps from multisensor AF products. We focused on 42 large wildfires greater than 5000 acres in Northern California from 2017 to 2018, where the USDA Forest Service National Infrared Operations (NIROPS) daily fire perimeters were available for the comparison. The standard AF products from the moderate resolution imaging spectroradiometer (MODIS), the visible infrared imaging radiometer suite (VIIRS), and the combined products were used as inputs. We found that the estimated fire progression areas generated by the natural neighbor method with the combined MODIS and VIIRS AF input layers performed the best, with R 2 of 0.7 ± 0.31 and RMSE of 1.25 ± 1.21 (10 3 acres) at a daily time scale; the accuracy was higher when assessed at a two-day rolling window, e.g., R 2 of 0.83 ± 0.20 and RMSE of 0.74 ± 0.94 (10 3 acres). A relatively higher spatial accuracy was found using the 375 m VIIRS AF product as inputs, with a kappa score of 0.55 and an overall accuracy score of 0.59, when interpolated with the natural neighbor method. Furthermore, the locational pixel-based comparison showed 61% matched to a single day and an additional 25% explained within ±1 day of the estimation, revealing greater confidence in fire progression estimation at a two-day moving time interval. This study demonstrated the efficacy and potential improvements of daily fire progression mapping at local and regional scales.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3019261</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Active satellites ; Estimation ; Fire behavior ; Fires ; Forestry ; Fuels ; geospatial ; Imaging radiometers ; Imaging techniques ; Infrared imaging ; Infrared radiometers ; Interpolation ; Mapping ; moderate resolution imaging spectroradiometer (MODIS) ; MODIS ; northern California ; Radiometers ; Radiometry ; Satellites ; Spectroradiometers ; visible infrared imaging radiometer suite (VIIRS) ; wildfire ; Wildfires</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5102-5114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5656bd5d067b77b00d81f3e05e0fae588fd07e6a7d4aadae5a657bdfa1f5e3623</citedby><cites>FETCH-LOGICAL-c408t-5656bd5d067b77b00d81f3e05e0fae588fd07e6a7d4aadae5a657bdfa1f5e3623</cites><orcidid>0000-0002-9049-9807 ; 0000-0003-3496-2876 ; 0000-0001-6563-7019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Scaduto, Erica</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Jin, Yufang</creatorcontrib><title>Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Satellite-based active fire (AF) products provide opportunities for constructing continuous fire progression maps, a critical dataset needed for improved fire behavior modeling and fire management. This study aims to investigate the geospatial interpolation techniques in mapping the daily fire progression and assess the accuracy of the derived maps from multisensor AF products. We focused on 42 large wildfires greater than 5000 acres in Northern California from 2017 to 2018, where the USDA Forest Service National Infrared Operations (NIROPS) daily fire perimeters were available for the comparison. The standard AF products from the moderate resolution imaging spectroradiometer (MODIS), the visible infrared imaging radiometer suite (VIIRS), and the combined products were used as inputs. We found that the estimated fire progression areas generated by the natural neighbor method with the combined MODIS and VIIRS AF input layers performed the best, with R 2 of 0.7 ± 0.31 and RMSE of 1.25 ± 1.21 (10 3 acres) at a daily time scale; the accuracy was higher when assessed at a two-day rolling window, e.g., R 2 of 0.83 ± 0.20 and RMSE of 0.74 ± 0.94 (10 3 acres). A relatively higher spatial accuracy was found using the 375 m VIIRS AF product as inputs, with a kappa score of 0.55 and an overall accuracy score of 0.59, when interpolated with the natural neighbor method. Furthermore, the locational pixel-based comparison showed 61% matched to a single day and an additional 25% explained within ±1 day of the estimation, revealing greater confidence in fire progression estimation at a two-day moving time interval. This study demonstrated the efficacy and potential improvements of daily fire progression mapping at local and regional scales.</description><subject>Accuracy</subject><subject>Active satellites</subject><subject>Estimation</subject><subject>Fire behavior</subject><subject>Fires</subject><subject>Forestry</subject><subject>Fuels</subject><subject>geospatial</subject><subject>Imaging radiometers</subject><subject>Imaging techniques</subject><subject>Infrared imaging</subject><subject>Infrared radiometers</subject><subject>Interpolation</subject><subject>Mapping</subject><subject>moderate resolution imaging spectroradiometer (MODIS)</subject><subject>MODIS</subject><subject>northern California</subject><subject>Radiometers</subject><subject>Radiometry</subject><subject>Satellites</subject><subject>Spectroradiometers</subject><subject>visible infrared imaging radiometer suite (VIIRS)</subject><subject>wildfire</subject><subject>Wildfires</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU9v1DAQxSMEEkvhE_RiiXOWGSe2E27LikKr5Y_YcrYm8WTrJRsHO0Xi2zfbVD2N9Ob93oz0suwSYY0I9Yeb_e3m134tQcK6AKylxhfZSqLCHFWhXmYrrIs6xxLK19mblI4AWpq6WGV_9jRx3_uJ80-U2IkrH1n8jOEQOSUfBvGNxtEPh49iI7bhNEa-4yH5fyw2Kc2WEw-T6EIUO4oHfsST8IP4HuJ0x3EQW-r9vB88vc1eddQnfvc0L7LfV59vt1_z3Y8v19vNLm9LqKZcaaUbpxxo0xjTALgKu4JBMXTEqqo6B4Y1GVcSuVkhrUzjOsJOcaFlcZFdL7ku0NGO0Z8o_reBvH0UQjxYipNve7ZQG0eArqxcV6JpGzbQSslaEhpimLPeL1ljDH_vOU32GO7jML9vZVmWGlHC2VUsrjaGlCJ3z1cR7LkhuzRkzw3Zp4Zm6nKhPDM_EzUaI7UqHgCLw44B</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Scaduto, Erica</creator><creator>Chen, Bin</creator><creator>Jin, Yufang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9049-9807</orcidid><orcidid>https://orcid.org/0000-0003-3496-2876</orcidid><orcidid>https://orcid.org/0000-0001-6563-7019</orcidid></search><sort><creationdate>2020</creationdate><title>Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California</title><author>Scaduto, Erica ; Chen, Bin ; Jin, Yufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5656bd5d067b77b00d81f3e05e0fae588fd07e6a7d4aadae5a657bdfa1f5e3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Active satellites</topic><topic>Estimation</topic><topic>Fire behavior</topic><topic>Fires</topic><topic>Forestry</topic><topic>Fuels</topic><topic>geospatial</topic><topic>Imaging radiometers</topic><topic>Imaging techniques</topic><topic>Infrared imaging</topic><topic>Infrared radiometers</topic><topic>Interpolation</topic><topic>Mapping</topic><topic>moderate resolution imaging spectroradiometer (MODIS)</topic><topic>MODIS</topic><topic>northern California</topic><topic>Radiometers</topic><topic>Radiometry</topic><topic>Satellites</topic><topic>Spectroradiometers</topic><topic>visible infrared imaging radiometer suite (VIIRS)</topic><topic>wildfire</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scaduto, Erica</creatorcontrib><creatorcontrib>Chen, Bin</creatorcontrib><creatorcontrib>Jin, Yufang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scaduto, Erica</au><au>Chen, Bin</au><au>Jin, Yufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5102</spage><epage>5114</epage><pages>5102-5114</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Satellite-based active fire (AF) products provide opportunities for constructing continuous fire progression maps, a critical dataset needed for improved fire behavior modeling and fire management. This study aims to investigate the geospatial interpolation techniques in mapping the daily fire progression and assess the accuracy of the derived maps from multisensor AF products. We focused on 42 large wildfires greater than 5000 acres in Northern California from 2017 to 2018, where the USDA Forest Service National Infrared Operations (NIROPS) daily fire perimeters were available for the comparison. The standard AF products from the moderate resolution imaging spectroradiometer (MODIS), the visible infrared imaging radiometer suite (VIIRS), and the combined products were used as inputs. We found that the estimated fire progression areas generated by the natural neighbor method with the combined MODIS and VIIRS AF input layers performed the best, with R 2 of 0.7 ± 0.31 and RMSE of 1.25 ± 1.21 (10 3 acres) at a daily time scale; the accuracy was higher when assessed at a two-day rolling window, e.g., R 2 of 0.83 ± 0.20 and RMSE of 0.74 ± 0.94 (10 3 acres). A relatively higher spatial accuracy was found using the 375 m VIIRS AF product as inputs, with a kappa score of 0.55 and an overall accuracy score of 0.59, when interpolated with the natural neighbor method. Furthermore, the locational pixel-based comparison showed 61% matched to a single day and an additional 25% explained within ±1 day of the estimation, revealing greater confidence in fire progression estimation at a two-day moving time interval. This study demonstrated the efficacy and potential improvements of daily fire progression mapping at local and regional scales.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3019261</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9049-9807</orcidid><orcidid>https://orcid.org/0000-0003-3496-2876</orcidid><orcidid>https://orcid.org/0000-0001-6563-7019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5102-5114 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2020_3019261 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Active satellites Estimation Fire behavior Fires Forestry Fuels geospatial Imaging radiometers Imaging techniques Infrared imaging Infrared radiometers Interpolation Mapping moderate resolution imaging spectroradiometer (MODIS) MODIS northern California Radiometers Radiometry Satellites Spectroradiometers visible infrared imaging radiometer suite (VIIRS) wildfire Wildfires |
title | Satellite-Based Fire Progression Mapping: A Comprehensive Assessment for Large Fires in Northern California |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A36%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite-Based%20Fire%20Progression%20Mapping:%20A%20Comprehensive%20Assessment%20for%20Large%20Fires%20in%20Northern%20California&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Scaduto,%20Erica&rft.date=2020&rft.volume=13&rft.spage=5102&rft.epage=5114&rft.pages=5102-5114&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3019261&rft_dat=%3Cproquest_cross%3E2444611200%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444611200&rft_id=info:pmid/&rft_ieee_id=9177265&rft_doaj_id=oai_doaj_org_article_097da01d48df417cbe70c22e62a17ae0&rfr_iscdi=true |