Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework
Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motio...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.1728-1740 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1740 |
---|---|
container_issue | |
container_start_page | 1728 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Bao, Min Zhou, Song Yang, Lei Xing, Mengdao Zhao, Lifan |
description | Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process. |
doi_str_mv | 10.1109/JSTARS.2020.3002394 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_3002394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9116966</ieee_id><doaj_id>oai_doaj_org_article_8ea05848ab25493eb631cdec79685f78</doaj_id><sourcerecordid>2479887381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</originalsourceid><addsrcrecordid>eNo9kU1PGzEQhq2qlZpSfgEXS5w39efaPoZASiqqIgJna3Z3jDaQdbCXVvDra7KIy4xmNO8zM3oJOeFszjlzP35tbhc3m7lggs0lY0I69YnMBNe84lrqz2TGnXQVV0x9Jd9y3jJWC-PkjDydwwjVeer_4kB_x7GPA13G3R6HDIcixEQXfWpiGpCe9Xks7ZZuFjd0vYN7TC_0bugw0RXksYR2jKl_xY6eQftAr1PcYnvgrBLs8F9MD9_JlwCPGY_f8xG5W13cLi-rqz8_18vFVdUqZseqaUB1aA0PqpMoOQKDYLRAg8IFZp1oWgBErrC8a4Bjp5i2oRZK68YGeUTWE7eLsPX71O8gvfgIvT80Yrr3kMovj-htgWurLDRCKyexqSVvO2yNq60OxhbW6cTap_j0jHn02_ichnK-F8o4a420vEzJaapNMeeE4WMrZ_7NJz_55N988u8-FdXJpOoR8UPhOK9dXcv_3M6Ppg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479887381</pqid></control><display><type>article</type><title>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bao, Min ; Zhou, Song ; Yang, Lei ; Xing, Mengdao ; Zhao, Lifan</creator><creatorcontrib>Bao, Min ; Zhou, Song ; Yang, Lei ; Xing, Mengdao ; Zhao, Lifan</creatorcontrib><description>Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3002394</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airborne radar ; Airborne remote sensing ; Algorithms ; Azimuth ; Bistatic synthetic aperture radar (BiSAR) ; Cell adhesion & migration ; Cell migration ; Compensation ; Data ; Error analysis ; fast factorized back projection (FFBP) ; Focusing ; Geometry ; Image quality ; Imagery ; Motion compensation ; motion compensation (MOCO) ; Movement ; nonsystematic range cell migration (NsRCM) ; Phase error ; Remote sensing ; SAR (radar) ; Signal processing algorithms ; Synthetic aperture radar ; Trajectory ; Wavelengths</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.1728-1740</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</citedby><cites>FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</cites><orcidid>0000-0002-2954-8673 ; 0000-0002-3856-0914 ; 0000-0002-4084-0915 ; 0000-0002-4625-5872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Min</creatorcontrib><creatorcontrib>Zhou, Song</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><title>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process.</description><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Algorithms</subject><subject>Azimuth</subject><subject>Bistatic synthetic aperture radar (BiSAR)</subject><subject>Cell adhesion & migration</subject><subject>Cell migration</subject><subject>Compensation</subject><subject>Data</subject><subject>Error analysis</subject><subject>fast factorized back projection (FFBP)</subject><subject>Focusing</subject><subject>Geometry</subject><subject>Image quality</subject><subject>Imagery</subject><subject>Motion compensation</subject><subject>motion compensation (MOCO)</subject><subject>Movement</subject><subject>nonsystematic range cell migration (NsRCM)</subject><subject>Phase error</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Signal processing algorithms</subject><subject>Synthetic aperture radar</subject><subject>Trajectory</subject><subject>Wavelengths</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU1PGzEQhq2qlZpSfgEXS5w39efaPoZASiqqIgJna3Z3jDaQdbCXVvDra7KIy4xmNO8zM3oJOeFszjlzP35tbhc3m7lggs0lY0I69YnMBNe84lrqz2TGnXQVV0x9Jd9y3jJWC-PkjDydwwjVeer_4kB_x7GPA13G3R6HDIcixEQXfWpiGpCe9Xks7ZZuFjd0vYN7TC_0bugw0RXksYR2jKl_xY6eQftAr1PcYnvgrBLs8F9MD9_JlwCPGY_f8xG5W13cLi-rqz8_18vFVdUqZseqaUB1aA0PqpMoOQKDYLRAg8IFZp1oWgBErrC8a4Bjp5i2oRZK68YGeUTWE7eLsPX71O8gvfgIvT80Yrr3kMovj-htgWurLDRCKyexqSVvO2yNq60OxhbW6cTap_j0jHn02_ichnK-F8o4a420vEzJaapNMeeE4WMrZ_7NJz_55N988u8-FdXJpOoR8UPhOK9dXcv_3M6Ppg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bao, Min</creator><creator>Zhou, Song</creator><creator>Yang, Lei</creator><creator>Xing, Mengdao</creator><creator>Zhao, Lifan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2954-8673</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0000-0002-4084-0915</orcidid><orcidid>https://orcid.org/0000-0002-4625-5872</orcidid></search><sort><creationdate>2021</creationdate><title>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</title><author>Bao, Min ; Zhou, Song ; Yang, Lei ; Xing, Mengdao ; Zhao, Lifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Algorithms</topic><topic>Azimuth</topic><topic>Bistatic synthetic aperture radar (BiSAR)</topic><topic>Cell adhesion & migration</topic><topic>Cell migration</topic><topic>Compensation</topic><topic>Data</topic><topic>Error analysis</topic><topic>fast factorized back projection (FFBP)</topic><topic>Focusing</topic><topic>Geometry</topic><topic>Image quality</topic><topic>Imagery</topic><topic>Motion compensation</topic><topic>motion compensation (MOCO)</topic><topic>Movement</topic><topic>nonsystematic range cell migration (NsRCM)</topic><topic>Phase error</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Signal processing algorithms</topic><topic>Synthetic aperture radar</topic><topic>Trajectory</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Min</creatorcontrib><creatorcontrib>Zhou, Song</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Min</au><au>Zhou, Song</au><au>Yang, Lei</au><au>Xing, Mengdao</au><au>Zhao, Lifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>1728</spage><epage>1740</epage><pages>1728-1740</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3002394</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2954-8673</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0000-0002-4084-0915</orcidid><orcidid>https://orcid.org/0000-0002-4625-5872</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.1728-1740 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2020_3002394 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Airborne radar Airborne remote sensing Algorithms Azimuth Bistatic synthetic aperture radar (BiSAR) Cell adhesion & migration Cell migration Compensation Data Error analysis fast factorized back projection (FFBP) Focusing Geometry Image quality Imagery Motion compensation motion compensation (MOCO) Movement nonsystematic range cell migration (NsRCM) Phase error Remote sensing SAR (radar) Signal processing algorithms Synthetic aperture radar Trajectory Wavelengths |
title | Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Motion%20Compensation%20for%20Airborne%20Bistatic%20SAR%20Imagery%20Under%20Fast%20Factorized%20Back%20Projection%20Framework&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Bao,%20Min&rft.date=2021&rft.volume=14&rft.spage=1728&rft.epage=1740&rft.pages=1728-1740&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3002394&rft_dat=%3Cproquest_cross%3E2479887381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479887381&rft_id=info:pmid/&rft_ieee_id=9116966&rft_doaj_id=oai_doaj_org_article_8ea05848ab25493eb631cdec79685f78&rfr_iscdi=true |