Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework

Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.1728-1740
Hauptverfasser: Bao, Min, Zhou, Song, Yang, Lei, Xing, Mengdao, Zhao, Lifan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1740
container_issue
container_start_page 1728
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Bao, Min
Zhou, Song
Yang, Lei
Xing, Mengdao
Zhao, Lifan
description Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process.
doi_str_mv 10.1109/JSTARS.2020.3002394
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_3002394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9116966</ieee_id><doaj_id>oai_doaj_org_article_8ea05848ab25493eb631cdec79685f78</doaj_id><sourcerecordid>2479887381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</originalsourceid><addsrcrecordid>eNo9kU1PGzEQhq2qlZpSfgEXS5w39efaPoZASiqqIgJna3Z3jDaQdbCXVvDra7KIy4xmNO8zM3oJOeFszjlzP35tbhc3m7lggs0lY0I69YnMBNe84lrqz2TGnXQVV0x9Jd9y3jJWC-PkjDydwwjVeer_4kB_x7GPA13G3R6HDIcixEQXfWpiGpCe9Xks7ZZuFjd0vYN7TC_0bugw0RXksYR2jKl_xY6eQftAr1PcYnvgrBLs8F9MD9_JlwCPGY_f8xG5W13cLi-rqz8_18vFVdUqZseqaUB1aA0PqpMoOQKDYLRAg8IFZp1oWgBErrC8a4Bjp5i2oRZK68YGeUTWE7eLsPX71O8gvfgIvT80Yrr3kMovj-htgWurLDRCKyexqSVvO2yNq60OxhbW6cTap_j0jHn02_ichnK-F8o4a420vEzJaapNMeeE4WMrZ_7NJz_55N988u8-FdXJpOoR8UPhOK9dXcv_3M6Ppg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479887381</pqid></control><display><type>article</type><title>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bao, Min ; Zhou, Song ; Yang, Lei ; Xing, Mengdao ; Zhao, Lifan</creator><creatorcontrib>Bao, Min ; Zhou, Song ; Yang, Lei ; Xing, Mengdao ; Zhao, Lifan</creatorcontrib><description>Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3002394</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Airborne radar ; Airborne remote sensing ; Algorithms ; Azimuth ; Bistatic synthetic aperture radar (BiSAR) ; Cell adhesion &amp; migration ; Cell migration ; Compensation ; Data ; Error analysis ; fast factorized back projection (FFBP) ; Focusing ; Geometry ; Image quality ; Imagery ; Motion compensation ; motion compensation (MOCO) ; Movement ; nonsystematic range cell migration (NsRCM) ; Phase error ; Remote sensing ; SAR (radar) ; Signal processing algorithms ; Synthetic aperture radar ; Trajectory ; Wavelengths</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.1728-1740</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</citedby><cites>FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</cites><orcidid>0000-0002-2954-8673 ; 0000-0002-3856-0914 ; 0000-0002-4084-0915 ; 0000-0002-4625-5872</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Bao, Min</creatorcontrib><creatorcontrib>Zhou, Song</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><title>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process.</description><subject>Airborne radar</subject><subject>Airborne remote sensing</subject><subject>Algorithms</subject><subject>Azimuth</subject><subject>Bistatic synthetic aperture radar (BiSAR)</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell migration</subject><subject>Compensation</subject><subject>Data</subject><subject>Error analysis</subject><subject>fast factorized back projection (FFBP)</subject><subject>Focusing</subject><subject>Geometry</subject><subject>Image quality</subject><subject>Imagery</subject><subject>Motion compensation</subject><subject>motion compensation (MOCO)</subject><subject>Movement</subject><subject>nonsystematic range cell migration (NsRCM)</subject><subject>Phase error</subject><subject>Remote sensing</subject><subject>SAR (radar)</subject><subject>Signal processing algorithms</subject><subject>Synthetic aperture radar</subject><subject>Trajectory</subject><subject>Wavelengths</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU1PGzEQhq2qlZpSfgEXS5w39efaPoZASiqqIgJna3Z3jDaQdbCXVvDra7KIy4xmNO8zM3oJOeFszjlzP35tbhc3m7lggs0lY0I69YnMBNe84lrqz2TGnXQVV0x9Jd9y3jJWC-PkjDydwwjVeer_4kB_x7GPA13G3R6HDIcixEQXfWpiGpCe9Xks7ZZuFjd0vYN7TC_0bugw0RXksYR2jKl_xY6eQftAr1PcYnvgrBLs8F9MD9_JlwCPGY_f8xG5W13cLi-rqz8_18vFVdUqZseqaUB1aA0PqpMoOQKDYLRAg8IFZp1oWgBErrC8a4Bjp5i2oRZK68YGeUTWE7eLsPX71O8gvfgIvT80Yrr3kMovj-htgWurLDRCKyexqSVvO2yNq60OxhbW6cTap_j0jHn02_ichnK-F8o4a420vEzJaapNMeeE4WMrZ_7NJz_55N988u8-FdXJpOoR8UPhOK9dXcv_3M6Ppg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Bao, Min</creator><creator>Zhou, Song</creator><creator>Yang, Lei</creator><creator>Xing, Mengdao</creator><creator>Zhao, Lifan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2954-8673</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0000-0002-4084-0915</orcidid><orcidid>https://orcid.org/0000-0002-4625-5872</orcidid></search><sort><creationdate>2021</creationdate><title>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</title><author>Bao, Min ; Zhou, Song ; Yang, Lei ; Xing, Mengdao ; Zhao, Lifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-bba4de871f4d3e31ea0af752e7e29f0892bcaaee14e2397a1ed4058f62455b8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airborne radar</topic><topic>Airborne remote sensing</topic><topic>Algorithms</topic><topic>Azimuth</topic><topic>Bistatic synthetic aperture radar (BiSAR)</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell migration</topic><topic>Compensation</topic><topic>Data</topic><topic>Error analysis</topic><topic>fast factorized back projection (FFBP)</topic><topic>Focusing</topic><topic>Geometry</topic><topic>Image quality</topic><topic>Imagery</topic><topic>Motion compensation</topic><topic>motion compensation (MOCO)</topic><topic>Movement</topic><topic>nonsystematic range cell migration (NsRCM)</topic><topic>Phase error</topic><topic>Remote sensing</topic><topic>SAR (radar)</topic><topic>Signal processing algorithms</topic><topic>Synthetic aperture radar</topic><topic>Trajectory</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Min</creatorcontrib><creatorcontrib>Zhou, Song</creatorcontrib><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Xing, Mengdao</creatorcontrib><creatorcontrib>Zhao, Lifan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Min</au><au>Zhou, Song</au><au>Yang, Lei</au><au>Xing, Mengdao</au><au>Zhao, Lifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>1728</spage><epage>1740</epage><pages>1728-1740</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Due to the independence of azimuth invariance and high implementing efficiency, a fast time-domain algorithm has significant advantages for airborne bistatic synthetic aperture radar (BiSAR) data process with general geometric configuration. In this article, the practical problem of unexpected motion errors of the airborne platform is carefully analyzed under a fast factorized back-projection (FFBP) framework for a general BiSAR process and a coherent data-driven motion compensation (MOCO) algorithm integrated with FFBP is proposed. By utilizing wavenumber decomposition, the analytical spectrum of a polar grid image is obtained where the motion error can be conveniently investigated in image spectrum domain and the coherence between azimuthal phase error (APE) and motion-induced nonsystematic range cell migration (NsRCM) can be perfectly revealed. Then, a new data-driven MOCO method for both APE and NsRCM correction is developed with the FFBP process. Different from the data-driven MOCO in most frequency-domain algorithms, the residual NsRCM introduced by the FFBP process is particularly analyzed and addressed in the MOCO, which significantly improves the image quality in focusing. Promising results from both simulation and raw data experiments are presented and analyzed to validate the advantages of the proposed algorithm for the airborne BiSAR process.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3002394</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2954-8673</orcidid><orcidid>https://orcid.org/0000-0002-3856-0914</orcidid><orcidid>https://orcid.org/0000-0002-4084-0915</orcidid><orcidid>https://orcid.org/0000-0002-4625-5872</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.1728-1740
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2020_3002394
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Airborne radar
Airborne remote sensing
Algorithms
Azimuth
Bistatic synthetic aperture radar (BiSAR)
Cell adhesion & migration
Cell migration
Compensation
Data
Error analysis
fast factorized back projection (FFBP)
Focusing
Geometry
Image quality
Imagery
Motion compensation
motion compensation (MOCO)
Movement
nonsystematic range cell migration (NsRCM)
Phase error
Remote sensing
SAR (radar)
Signal processing algorithms
Synthetic aperture radar
Trajectory
Wavelengths
title Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Motion%20Compensation%20for%20Airborne%20Bistatic%20SAR%20Imagery%20Under%20Fast%20Factorized%20Back%20Projection%20Framework&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Bao,%20Min&rft.date=2021&rft.volume=14&rft.spage=1728&rft.epage=1740&rft.pages=1728-1740&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3002394&rft_dat=%3Cproquest_cross%3E2479887381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479887381&rft_id=info:pmid/&rft_ieee_id=9116966&rft_doaj_id=oai_doaj_org_article_8ea05848ab25493eb631cdec79685f78&rfr_iscdi=true