Microwave Radiometer Instability Due to Infrequent Calibration
We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementa...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.3281-3290 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3290 |
---|---|
container_issue | |
container_start_page | 3281 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Coakley, Kevin J. Splett, Jolene Walker, David Aksoy, Mustafa Racette, Paul |
description | We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times. |
doi_str_mv | 10.1109/JSTARS.2020.2984004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_2984004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9069174</ieee_id><doaj_id>oai_doaj_org_article_1e65695d0e2b49818453e276188c0815</doaj_id><sourcerecordid>2418420029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVpabbb_oJAMfSlL95qdLGll0DY3rYkBJL0WcjSONXitVLZTsm_r1JvlqRPAzPfHGbOIeQY6AqA6k8_rq5PL69WjDK6YloJSsULsmAgoQTJ5UuyAM11CYKKI_JmGLaUVqzW_DU54hwoyFovyMl5cCn-sXdYXFof4g5HTMWmH0bbhC6M98XnCYsx5lab8PeE_VisbReaZMcQ-7fkVWu7Ad_t65L8_Prlev29PLv4tlmfnpVOgh5LgS3z1DaNa6CVwnHXWPSKOa7RNsrW-XbuuGTcc2-1q6gG5r2kda1kLVu-JJtZ10e7Nbcp7Gy6N9EG868R042xaQyuQwNYyUpLT5E1QitQQnJkdQVKOaqyM0tyMmvdTs0OvcsvJds9E30-6cMvcxPvTJ0dU7zKAh_3AilmR4bR7MLgsOtsj3EaDBNSCGCMiYx--A_dxin12apM5dMYpUxnis9UjmIYEraHY4Cah6zNnLV5yNrss85b75_-cdh5DDcDxzMQEPEw1rTSUAv-F85TrSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418420029</pqid></control><display><type>article</type><title>Microwave Radiometer Instability Due to Infrequent Calibration</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Coakley, Kevin J. ; Splett, Jolene ; Walker, David ; Aksoy, Mustafa ; Racette, Paul</creator><creatorcontrib>Coakley, Kevin J. ; Splett, Jolene ; Walker, David ; Aksoy, Mustafa ; Racette, Paul</creatorcontrib><description>We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2984004</identifier><identifier>PMID: 33101579</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Calibration ; Computer simulation ; Data ; Data acquisition ; Imaging radiometers ; Measurement ; measurement errors ; Microwave radiometers ; Microwave radiometry ; Millimeter waves ; Monte Carlo simulation ; Power measurement ; Prediction models ; Radiometers ; random noise ; remote sensing ; Stability ; Stability analysis ; stability criteria ; Statistical methods ; statistics ; Stochastic models ; stochastic processes ; Stochasticity ; Temperature measurement ; Thermal stability ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.3281-3290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</citedby><cites>FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</cites><orcidid>0000-0001-5452-1862 ; 0000-0003-3787-2577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33101579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coakley, Kevin J.</creatorcontrib><creatorcontrib>Splett, Jolene</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Aksoy, Mustafa</creatorcontrib><creatorcontrib>Racette, Paul</creatorcontrib><title>Microwave Radiometer Instability Due to Infrequent Calibration</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J Sel Top Appl Earth Obs Remote Sens</addtitle><description>We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.</description><subject>Calibration</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Imaging radiometers</subject><subject>Measurement</subject><subject>measurement errors</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Millimeter waves</subject><subject>Monte Carlo simulation</subject><subject>Power measurement</subject><subject>Prediction models</subject><subject>Radiometers</subject><subject>random noise</subject><subject>remote sensing</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>stability criteria</subject><subject>Statistical methods</subject><subject>statistics</subject><subject>Stochastic models</subject><subject>stochastic processes</subject><subject>Stochasticity</subject><subject>Temperature measurement</subject><subject>Thermal stability</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkVtr3DAQhUVpabbb_oJAMfSlL95qdLGll0DY3rYkBJL0WcjSONXitVLZTsm_r1JvlqRPAzPfHGbOIeQY6AqA6k8_rq5PL69WjDK6YloJSsULsmAgoQTJ5UuyAM11CYKKI_JmGLaUVqzW_DU54hwoyFovyMl5cCn-sXdYXFof4g5HTMWmH0bbhC6M98XnCYsx5lab8PeE_VisbReaZMcQ-7fkVWu7Ad_t65L8_Prlev29PLv4tlmfnpVOgh5LgS3z1DaNa6CVwnHXWPSKOa7RNsrW-XbuuGTcc2-1q6gG5r2kda1kLVu-JJtZ10e7Nbcp7Gy6N9EG868R042xaQyuQwNYyUpLT5E1QitQQnJkdQVKOaqyM0tyMmvdTs0OvcsvJds9E30-6cMvcxPvTJ0dU7zKAh_3AilmR4bR7MLgsOtsj3EaDBNSCGCMiYx--A_dxin12apM5dMYpUxnis9UjmIYEraHY4Cah6zNnLV5yNrss85b75_-cdh5DDcDxzMQEPEw1rTSUAv-F85TrSw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Coakley, Kevin J.</creator><creator>Splett, Jolene</creator><creator>Walker, David</creator><creator>Aksoy, Mustafa</creator><creator>Racette, Paul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5452-1862</orcidid><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid></search><sort><creationdate>2020</creationdate><title>Microwave Radiometer Instability Due to Infrequent Calibration</title><author>Coakley, Kevin J. ; Splett, Jolene ; Walker, David ; Aksoy, Mustafa ; Racette, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Imaging radiometers</topic><topic>Measurement</topic><topic>measurement errors</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Millimeter waves</topic><topic>Monte Carlo simulation</topic><topic>Power measurement</topic><topic>Prediction models</topic><topic>Radiometers</topic><topic>random noise</topic><topic>remote sensing</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>stability criteria</topic><topic>Statistical methods</topic><topic>statistics</topic><topic>Stochastic models</topic><topic>stochastic processes</topic><topic>Stochasticity</topic><topic>Temperature measurement</topic><topic>Thermal stability</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coakley, Kevin J.</creatorcontrib><creatorcontrib>Splett, Jolene</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Aksoy, Mustafa</creatorcontrib><creatorcontrib>Racette, Paul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coakley, Kevin J.</au><au>Splett, Jolene</au><au>Walker, David</au><au>Aksoy, Mustafa</au><au>Racette, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Radiometer Instability Due to Infrequent Calibration</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><addtitle>IEEE J Sel Top Appl Earth Obs Remote Sens</addtitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>3281</spage><epage>3290</epage><pages>3281-3290</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33101579</pmid><doi>10.1109/JSTARS.2020.2984004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5452-1862</orcidid><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.3281-3290 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2020_2984004 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Calibration Computer simulation Data Data acquisition Imaging radiometers Measurement measurement errors Microwave radiometers Microwave radiometry Millimeter waves Monte Carlo simulation Power measurement Prediction models Radiometers random noise remote sensing Stability Stability analysis stability criteria Statistical methods statistics Stochastic models stochastic processes Stochasticity Temperature measurement Thermal stability Uncertainty uncertainty quantification |
title | Microwave Radiometer Instability Due to Infrequent Calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Radiometer%20Instability%20Due%20to%20Infrequent%20Calibration&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Coakley,%20Kevin%20J.&rft.date=2020&rft.volume=13&rft.spage=3281&rft.epage=3290&rft.pages=3281-3290&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2984004&rft_dat=%3Cproquest_cross%3E2418420029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418420029&rft_id=info:pmid/33101579&rft_ieee_id=9069174&rft_doaj_id=oai_doaj_org_article_1e65695d0e2b49818453e276188c0815&rfr_iscdi=true |