Microwave Radiometer Instability Due to Infrequent Calibration

We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.3281-3290
Hauptverfasser: Coakley, Kevin J., Splett, Jolene, Walker, David, Aksoy, Mustafa, Racette, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3290
container_issue
container_start_page 3281
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Coakley, Kevin J.
Splett, Jolene
Walker, David
Aksoy, Mustafa
Racette, Paul
description We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.
doi_str_mv 10.1109/JSTARS.2020.2984004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_2984004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9069174</ieee_id><doaj_id>oai_doaj_org_article_1e65695d0e2b49818453e276188c0815</doaj_id><sourcerecordid>2418420029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</originalsourceid><addsrcrecordid>eNpdkVtr3DAQhUVpabbb_oJAMfSlL95qdLGll0DY3rYkBJL0WcjSONXitVLZTsm_r1JvlqRPAzPfHGbOIeQY6AqA6k8_rq5PL69WjDK6YloJSsULsmAgoQTJ5UuyAM11CYKKI_JmGLaUVqzW_DU54hwoyFovyMl5cCn-sXdYXFof4g5HTMWmH0bbhC6M98XnCYsx5lab8PeE_VisbReaZMcQ-7fkVWu7Ad_t65L8_Prlev29PLv4tlmfnpVOgh5LgS3z1DaNa6CVwnHXWPSKOa7RNsrW-XbuuGTcc2-1q6gG5r2kda1kLVu-JJtZ10e7Nbcp7Gy6N9EG868R042xaQyuQwNYyUpLT5E1QitQQnJkdQVKOaqyM0tyMmvdTs0OvcsvJds9E30-6cMvcxPvTJ0dU7zKAh_3AilmR4bR7MLgsOtsj3EaDBNSCGCMiYx--A_dxin12apM5dMYpUxnis9UjmIYEraHY4Cah6zNnLV5yNrss85b75_-cdh5DDcDxzMQEPEw1rTSUAv-F85TrSw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418420029</pqid></control><display><type>article</type><title>Microwave Radiometer Instability Due to Infrequent Calibration</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Coakley, Kevin J. ; Splett, Jolene ; Walker, David ; Aksoy, Mustafa ; Racette, Paul</creator><creatorcontrib>Coakley, Kevin J. ; Splett, Jolene ; Walker, David ; Aksoy, Mustafa ; Racette, Paul</creatorcontrib><description>We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2984004</identifier><identifier>PMID: 33101579</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Calibration ; Computer simulation ; Data ; Data acquisition ; Imaging radiometers ; Measurement ; measurement errors ; Microwave radiometers ; Microwave radiometry ; Millimeter waves ; Monte Carlo simulation ; Power measurement ; Prediction models ; Radiometers ; random noise ; remote sensing ; Stability ; Stability analysis ; stability criteria ; Statistical methods ; statistics ; Stochastic models ; stochastic processes ; Stochasticity ; Temperature measurement ; Thermal stability ; Uncertainty ; uncertainty quantification</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.3281-3290</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</citedby><cites>FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</cites><orcidid>0000-0001-5452-1862 ; 0000-0003-3787-2577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,2102,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33101579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coakley, Kevin J.</creatorcontrib><creatorcontrib>Splett, Jolene</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Aksoy, Mustafa</creatorcontrib><creatorcontrib>Racette, Paul</creatorcontrib><title>Microwave Radiometer Instability Due to Infrequent Calibration</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><addtitle>IEEE J Sel Top Appl Earth Obs Remote Sens</addtitle><description>We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.</description><subject>Calibration</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data acquisition</subject><subject>Imaging radiometers</subject><subject>Measurement</subject><subject>measurement errors</subject><subject>Microwave radiometers</subject><subject>Microwave radiometry</subject><subject>Millimeter waves</subject><subject>Monte Carlo simulation</subject><subject>Power measurement</subject><subject>Prediction models</subject><subject>Radiometers</subject><subject>random noise</subject><subject>remote sensing</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>stability criteria</subject><subject>Statistical methods</subject><subject>statistics</subject><subject>Stochastic models</subject><subject>stochastic processes</subject><subject>Stochasticity</subject><subject>Temperature measurement</subject><subject>Thermal stability</subject><subject>Uncertainty</subject><subject>uncertainty quantification</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpdkVtr3DAQhUVpabbb_oJAMfSlL95qdLGll0DY3rYkBJL0WcjSONXitVLZTsm_r1JvlqRPAzPfHGbOIeQY6AqA6k8_rq5PL69WjDK6YloJSsULsmAgoQTJ5UuyAM11CYKKI_JmGLaUVqzW_DU54hwoyFovyMl5cCn-sXdYXFof4g5HTMWmH0bbhC6M98XnCYsx5lab8PeE_VisbReaZMcQ-7fkVWu7Ad_t65L8_Prlev29PLv4tlmfnpVOgh5LgS3z1DaNa6CVwnHXWPSKOa7RNsrW-XbuuGTcc2-1q6gG5r2kda1kLVu-JJtZ10e7Nbcp7Gy6N9EG868R042xaQyuQwNYyUpLT5E1QitQQnJkdQVKOaqyM0tyMmvdTs0OvcsvJds9E30-6cMvcxPvTJ0dU7zKAh_3AilmR4bR7MLgsOtsj3EaDBNSCGCMiYx--A_dxin12apM5dMYpUxnis9UjmIYEraHY4Cah6zNnLV5yNrss85b75_-cdh5DDcDxzMQEPEw1rTSUAv-F85TrSw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Coakley, Kevin J.</creator><creator>Splett, Jolene</creator><creator>Walker, David</creator><creator>Aksoy, Mustafa</creator><creator>Racette, Paul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5452-1862</orcidid><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid></search><sort><creationdate>2020</creationdate><title>Microwave Radiometer Instability Due to Infrequent Calibration</title><author>Coakley, Kevin J. ; Splett, Jolene ; Walker, David ; Aksoy, Mustafa ; Racette, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-4ef2d0abbcb1f54c3cbaed82c39eab8a70043c3523d3da9c60912dd50778575f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calibration</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data acquisition</topic><topic>Imaging radiometers</topic><topic>Measurement</topic><topic>measurement errors</topic><topic>Microwave radiometers</topic><topic>Microwave radiometry</topic><topic>Millimeter waves</topic><topic>Monte Carlo simulation</topic><topic>Power measurement</topic><topic>Prediction models</topic><topic>Radiometers</topic><topic>random noise</topic><topic>remote sensing</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>stability criteria</topic><topic>Statistical methods</topic><topic>statistics</topic><topic>Stochastic models</topic><topic>stochastic processes</topic><topic>Stochasticity</topic><topic>Temperature measurement</topic><topic>Thermal stability</topic><topic>Uncertainty</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coakley, Kevin J.</creatorcontrib><creatorcontrib>Splett, Jolene</creatorcontrib><creatorcontrib>Walker, David</creatorcontrib><creatorcontrib>Aksoy, Mustafa</creatorcontrib><creatorcontrib>Racette, Paul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coakley, Kevin J.</au><au>Splett, Jolene</au><au>Walker, David</au><au>Aksoy, Mustafa</au><au>Racette, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave Radiometer Instability Due to Infrequent Calibration</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><addtitle>IEEE J Sel Top Appl Earth Obs Remote Sens</addtitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>3281</spage><epage>3290</epage><pages>3281-3290</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>We directly quantify the effect of infrequent calibration on the stability of microwave radiometer temperature measurements (where a power measurement for the unknown source is acquired at a fixed time, but calibration data are acquired at variable earlier times) with robust and nonrobust implementations of a new metric. Based on our new metric, we also determine a component of uncertainty in a single measurement due to infrequent calibration effects. We apply our metric to experimental data acquired from experimental ground-based calibration data acquired from a NASA millimeter-wave imaging radiometer and a NIST radiometer (Noise Figure Radiometer-NFRad). Based on a stochastic model for the NFRad, we determine the random uncertainty of an empirical prediction model of our stability metric by a Monte Carlo method. For comparison purposes, we also present a secondary metric that quantifies stability for the case where calibration data are acquired at a fixed time, but power measurements for the unknown source are acquired at variable later times.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33101579</pmid><doi>10.1109/JSTARS.2020.2984004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5452-1862</orcidid><orcidid>https://orcid.org/0000-0003-3787-2577</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.3281-3290
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2020_2984004
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Calibration
Computer simulation
Data
Data acquisition
Imaging radiometers
Measurement
measurement errors
Microwave radiometers
Microwave radiometry
Millimeter waves
Monte Carlo simulation
Power measurement
Prediction models
Radiometers
random noise
remote sensing
Stability
Stability analysis
stability criteria
Statistical methods
statistics
Stochastic models
stochastic processes
Stochasticity
Temperature measurement
Thermal stability
Uncertainty
uncertainty quantification
title Microwave Radiometer Instability Due to Infrequent Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20Radiometer%20Instability%20Due%20to%20Infrequent%20Calibration&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Coakley,%20Kevin%20J.&rft.date=2020&rft.volume=13&rft.spage=3281&rft.epage=3290&rft.pages=3281-3290&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2984004&rft_dat=%3Cproquest_cross%3E2418420029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418420029&rft_id=info:pmid/33101579&rft_ieee_id=9069174&rft_doaj_id=oai_doaj_org_article_1e65695d0e2b49818453e276188c0815&rfr_iscdi=true