Wavelength Calibration Correction Technique for Improved Emissivity Retrieval

Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.642-648
Hauptverfasser: Pieper, Michael, Manolakis, Dimitris, Truslow, Eric, Weisner, Andrew, Bostick, Randall, Cooley, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue
container_start_page 642
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Pieper, Michael
Manolakis, Dimitris
Truslow, Eric
Weisner, Andrew
Bostick, Randall
Cooley, Thomas
description Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities.
doi_str_mv 10.1109/JSTARS.2020.2968044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_2968044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8984742</ieee_id><doaj_id>oai_doaj_org_article_b15ada9a830b42ba898b97a457f89dda</doaj_id><sourcerecordid>2359904317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</originalsourceid><addsrcrecordid>eNo9UUtLJDEQDuKCo-4v8NLguWdTeUwnRxncdUQRdJY9hkp3RTP0TDTdDsy_32iLpyqK-l58jF0AnwNw--v2aX31-DQXXPC5sAvDlTpiMwEaatBSH7MZWGlrUFydsNNh2HC-EI2VM3b_D_fU0-55fKmW2EefcYxpVy1TztR-rmtqX3bx7Z2qkHK12r7mtKeuut7GYYj7OB6qRxpzpD325-xHwH6gn1_zjP39fb1e3tR3D39Wy6u7ulXcjLUwXixQNxJCZxv0CoNQ0FprsFPBe8LQmha7DklrC9oo0M1CKwDNJQUlz9hq4u0SbtxrjlvMB5cwus9Dys8O8xjbnpwHjR1aNJJ7JTwaa3zRVLoJxhaFwnU5cZVcJeQwuk16z7ti3wmpreVKQlO-5PTV5jQMmcK3KnD30YGbOnAfHbivDgrqYkJFIvpGFAuqUUL-B1LNg_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359904317</pqid></control><display><type>article</type><title>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Pieper, Michael ; Manolakis, Dimitris ; Truslow, Eric ; Weisner, Andrew ; Bostick, Randall ; Cooley, Thomas</creator><creatorcontrib>Pieper, Michael ; Manolakis, Dimitris ; Truslow, Eric ; Weisner, Andrew ; Bostick, Randall ; Cooley, Thomas</creatorcontrib><description>Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2968044</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Apertures ; Atmospheric correction ; Atmospheric measurements ; Atmospheric modeling ; Atmospheric models ; Atmospheric waves ; Calibration ; Computer simulation ; Emissivity ; Error correction ; Error reduction ; Errors ; Hyperspectral imaging ; Imaging techniques ; Infrared imaging ; Land surface temperature ; Military applications ; Pixels ; Radiance ; remote sensing ; Response functions ; Retrieval ; Roughness ; Spectra ; Spectral sensitivity ; Temperature ; Temperature measurement ; Wavelength</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.642-648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</citedby><cites>FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</cites><orcidid>0000-0001-7191-4254 ; 0000-0003-1341-1522 ; 0000-0002-9741-8467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,4025,27925,27926,27927</link.rule.ids></links><search><creatorcontrib>Pieper, Michael</creatorcontrib><creatorcontrib>Manolakis, Dimitris</creatorcontrib><creatorcontrib>Truslow, Eric</creatorcontrib><creatorcontrib>Weisner, Andrew</creatorcontrib><creatorcontrib>Bostick, Randall</creatorcontrib><creatorcontrib>Cooley, Thomas</creatorcontrib><title>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities.</description><subject>Apertures</subject><subject>Atmospheric correction</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Atmospheric waves</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Emissivity</subject><subject>Error correction</subject><subject>Error reduction</subject><subject>Errors</subject><subject>Hyperspectral imaging</subject><subject>Imaging techniques</subject><subject>Infrared imaging</subject><subject>Land surface temperature</subject><subject>Military applications</subject><subject>Pixels</subject><subject>Radiance</subject><subject>remote sensing</subject><subject>Response functions</subject><subject>Retrieval</subject><subject>Roughness</subject><subject>Spectra</subject><subject>Spectral sensitivity</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Wavelength</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UUtLJDEQDuKCo-4v8NLguWdTeUwnRxncdUQRdJY9hkp3RTP0TDTdDsy_32iLpyqK-l58jF0AnwNw--v2aX31-DQXXPC5sAvDlTpiMwEaatBSH7MZWGlrUFydsNNh2HC-EI2VM3b_D_fU0-55fKmW2EefcYxpVy1TztR-rmtqX3bx7Z2qkHK12r7mtKeuut7GYYj7OB6qRxpzpD325-xHwH6gn1_zjP39fb1e3tR3D39Wy6u7ulXcjLUwXixQNxJCZxv0CoNQ0FprsFPBe8LQmha7DklrC9oo0M1CKwDNJQUlz9hq4u0SbtxrjlvMB5cwus9Dys8O8xjbnpwHjR1aNJJ7JTwaa3zRVLoJxhaFwnU5cZVcJeQwuk16z7ti3wmpreVKQlO-5PTV5jQMmcK3KnD30YGbOnAfHbivDgrqYkJFIvpGFAuqUUL-B1LNg_g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Pieper, Michael</creator><creator>Manolakis, Dimitris</creator><creator>Truslow, Eric</creator><creator>Weisner, Andrew</creator><creator>Bostick, Randall</creator><creator>Cooley, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7191-4254</orcidid><orcidid>https://orcid.org/0000-0003-1341-1522</orcidid><orcidid>https://orcid.org/0000-0002-9741-8467</orcidid></search><sort><creationdate>2020</creationdate><title>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</title><author>Pieper, Michael ; Manolakis, Dimitris ; Truslow, Eric ; Weisner, Andrew ; Bostick, Randall ; Cooley, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apertures</topic><topic>Atmospheric correction</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Atmospheric waves</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Emissivity</topic><topic>Error correction</topic><topic>Error reduction</topic><topic>Errors</topic><topic>Hyperspectral imaging</topic><topic>Imaging techniques</topic><topic>Infrared imaging</topic><topic>Land surface temperature</topic><topic>Military applications</topic><topic>Pixels</topic><topic>Radiance</topic><topic>remote sensing</topic><topic>Response functions</topic><topic>Retrieval</topic><topic>Roughness</topic><topic>Spectra</topic><topic>Spectral sensitivity</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pieper, Michael</creatorcontrib><creatorcontrib>Manolakis, Dimitris</creatorcontrib><creatorcontrib>Truslow, Eric</creatorcontrib><creatorcontrib>Weisner, Andrew</creatorcontrib><creatorcontrib>Bostick, Randall</creatorcontrib><creatorcontrib>Cooley, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pieper, Michael</au><au>Manolakis, Dimitris</au><au>Truslow, Eric</au><au>Weisner, Andrew</au><au>Bostick, Randall</au><au>Cooley, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>642</spage><epage>648</epage><pages>642-648</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2968044</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7191-4254</orcidid><orcidid>https://orcid.org/0000-0003-1341-1522</orcidid><orcidid>https://orcid.org/0000-0002-9741-8467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.642-648
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2020_2968044
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Apertures
Atmospheric correction
Atmospheric measurements
Atmospheric modeling
Atmospheric models
Atmospheric waves
Calibration
Computer simulation
Emissivity
Error correction
Error reduction
Errors
Hyperspectral imaging
Imaging techniques
Infrared imaging
Land surface temperature
Military applications
Pixels
Radiance
remote sensing
Response functions
Retrieval
Roughness
Spectra
Spectral sensitivity
Temperature
Temperature measurement
Wavelength
title Wavelength Calibration Correction Technique for Improved Emissivity Retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelength%20Calibration%20Correction%20Technique%20for%20Improved%20Emissivity%20Retrieval&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Pieper,%20Michael&rft.date=2020&rft.volume=13&rft.spage=642&rft.epage=648&rft.pages=642-648&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2968044&rft_dat=%3Cproquest_cross%3E2359904317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359904317&rft_id=info:pmid/&rft_ieee_id=8984742&rft_doaj_id=oai_doaj_org_article_b15ada9a830b42ba898b97a457f89dda&rfr_iscdi=true