Wavelength Calibration Correction Technique for Improved Emissivity Retrieval
Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.642-648 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648 |
---|---|
container_issue | |
container_start_page | 642 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Pieper, Michael Manolakis, Dimitris Truslow, Eric Weisner, Andrew Bostick, Randall Cooley, Thomas |
description | Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities. |
doi_str_mv | 10.1109/JSTARS.2020.2968044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_2968044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8984742</ieee_id><doaj_id>oai_doaj_org_article_b15ada9a830b42ba898b97a457f89dda</doaj_id><sourcerecordid>2359904317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</originalsourceid><addsrcrecordid>eNo9UUtLJDEQDuKCo-4v8NLguWdTeUwnRxncdUQRdJY9hkp3RTP0TDTdDsy_32iLpyqK-l58jF0AnwNw--v2aX31-DQXXPC5sAvDlTpiMwEaatBSH7MZWGlrUFydsNNh2HC-EI2VM3b_D_fU0-55fKmW2EefcYxpVy1TztR-rmtqX3bx7Z2qkHK12r7mtKeuut7GYYj7OB6qRxpzpD325-xHwH6gn1_zjP39fb1e3tR3D39Wy6u7ulXcjLUwXixQNxJCZxv0CoNQ0FprsFPBe8LQmha7DklrC9oo0M1CKwDNJQUlz9hq4u0SbtxrjlvMB5cwus9Dys8O8xjbnpwHjR1aNJJ7JTwaa3zRVLoJxhaFwnU5cZVcJeQwuk16z7ti3wmpreVKQlO-5PTV5jQMmcK3KnD30YGbOnAfHbivDgrqYkJFIvpGFAuqUUL-B1LNg_g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359904317</pqid></control><display><type>article</type><title>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Pieper, Michael ; Manolakis, Dimitris ; Truslow, Eric ; Weisner, Andrew ; Bostick, Randall ; Cooley, Thomas</creator><creatorcontrib>Pieper, Michael ; Manolakis, Dimitris ; Truslow, Eric ; Weisner, Andrew ; Bostick, Randall ; Cooley, Thomas</creatorcontrib><description>Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2968044</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Apertures ; Atmospheric correction ; Atmospheric measurements ; Atmospheric modeling ; Atmospheric models ; Atmospheric waves ; Calibration ; Computer simulation ; Emissivity ; Error correction ; Error reduction ; Errors ; Hyperspectral imaging ; Imaging techniques ; Infrared imaging ; Land surface temperature ; Military applications ; Pixels ; Radiance ; remote sensing ; Response functions ; Retrieval ; Roughness ; Spectra ; Spectral sensitivity ; Temperature ; Temperature measurement ; Wavelength</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.642-648</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</citedby><cites>FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</cites><orcidid>0000-0001-7191-4254 ; 0000-0003-1341-1522 ; 0000-0002-9741-8467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,4025,27925,27926,27927</link.rule.ids></links><search><creatorcontrib>Pieper, Michael</creatorcontrib><creatorcontrib>Manolakis, Dimitris</creatorcontrib><creatorcontrib>Truslow, Eric</creatorcontrib><creatorcontrib>Weisner, Andrew</creatorcontrib><creatorcontrib>Bostick, Randall</creatorcontrib><creatorcontrib>Cooley, Thomas</creatorcontrib><title>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities.</description><subject>Apertures</subject><subject>Atmospheric correction</subject><subject>Atmospheric measurements</subject><subject>Atmospheric modeling</subject><subject>Atmospheric models</subject><subject>Atmospheric waves</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Emissivity</subject><subject>Error correction</subject><subject>Error reduction</subject><subject>Errors</subject><subject>Hyperspectral imaging</subject><subject>Imaging techniques</subject><subject>Infrared imaging</subject><subject>Land surface temperature</subject><subject>Military applications</subject><subject>Pixels</subject><subject>Radiance</subject><subject>remote sensing</subject><subject>Response functions</subject><subject>Retrieval</subject><subject>Roughness</subject><subject>Spectra</subject><subject>Spectral sensitivity</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Wavelength</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UUtLJDEQDuKCo-4v8NLguWdTeUwnRxncdUQRdJY9hkp3RTP0TDTdDsy_32iLpyqK-l58jF0AnwNw--v2aX31-DQXXPC5sAvDlTpiMwEaatBSH7MZWGlrUFydsNNh2HC-EI2VM3b_D_fU0-55fKmW2EefcYxpVy1TztR-rmtqX3bx7Z2qkHK12r7mtKeuut7GYYj7OB6qRxpzpD325-xHwH6gn1_zjP39fb1e3tR3D39Wy6u7ulXcjLUwXixQNxJCZxv0CoNQ0FprsFPBe8LQmha7DklrC9oo0M1CKwDNJQUlz9hq4u0SbtxrjlvMB5cwus9Dys8O8xjbnpwHjR1aNJJ7JTwaa3zRVLoJxhaFwnU5cZVcJeQwuk16z7ti3wmpreVKQlO-5PTV5jQMmcK3KnD30YGbOnAfHbivDgrqYkJFIvpGFAuqUUL-B1LNg_g</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Pieper, Michael</creator><creator>Manolakis, Dimitris</creator><creator>Truslow, Eric</creator><creator>Weisner, Andrew</creator><creator>Bostick, Randall</creator><creator>Cooley, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7191-4254</orcidid><orcidid>https://orcid.org/0000-0003-1341-1522</orcidid><orcidid>https://orcid.org/0000-0002-9741-8467</orcidid></search><sort><creationdate>2020</creationdate><title>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</title><author>Pieper, Michael ; Manolakis, Dimitris ; Truslow, Eric ; Weisner, Andrew ; Bostick, Randall ; Cooley, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-28b26a5731fd97ab4af241c998ad4fbbeafc8caddae559158415765411503ef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Apertures</topic><topic>Atmospheric correction</topic><topic>Atmospheric measurements</topic><topic>Atmospheric modeling</topic><topic>Atmospheric models</topic><topic>Atmospheric waves</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Emissivity</topic><topic>Error correction</topic><topic>Error reduction</topic><topic>Errors</topic><topic>Hyperspectral imaging</topic><topic>Imaging techniques</topic><topic>Infrared imaging</topic><topic>Land surface temperature</topic><topic>Military applications</topic><topic>Pixels</topic><topic>Radiance</topic><topic>remote sensing</topic><topic>Response functions</topic><topic>Retrieval</topic><topic>Roughness</topic><topic>Spectra</topic><topic>Spectral sensitivity</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pieper, Michael</creatorcontrib><creatorcontrib>Manolakis, Dimitris</creatorcontrib><creatorcontrib>Truslow, Eric</creatorcontrib><creatorcontrib>Weisner, Andrew</creatorcontrib><creatorcontrib>Bostick, Randall</creatorcontrib><creatorcontrib>Cooley, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pieper, Michael</au><au>Manolakis, Dimitris</au><au>Truslow, Eric</au><au>Weisner, Andrew</au><au>Bostick, Randall</au><au>Cooley, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelength Calibration Correction Technique for Improved Emissivity Retrieval</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>642</spage><epage>648</epage><pages>642-648</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Accurate retrieval of surface emissivity from long-wave infrared hyperspectral imaging data is necessary for many scientific and defense applications. Emissivity retrieval requires an atmospheric model for the scene and consists of two interwoven steps: atmospheric compensation (AC) and temperature-emissivity separation (TES). AC converts the at-aperture radiance to ground radiance, and TES uses the ground radiance to produce a temperature and emissivity estimate. TES assumes that emissivity spectra for solids are smooth, compared to atmospheric features. Model-based techniques find an atmospheric model, which produces the smoothest emissivity estimates. The high-resolution model must be band averaged to the sensor's spectral response function (SRF), which is difficult to characterize and maintain. Any errors in the SRF cause errors in the atmospheric spectra and roughness in the emissivity estimates. We propose a technique that improves the quality of the retrieved emissivity by correcting band-averaging errors of the model from the SRF. An in-scene AC (ISAC) technique is used to find pixels containing a high emissivity material. Atmospheric model bands far from absorption features and a material library are then used to identify the material and estimate the pixel temperatures. At-aperture radiance spectra are generated for the pixels, instead of the ground radiance spectra generated by ISAC. The linear relationship between the generated and measured at-aperture radiances is used to determine model correction factors. Using simulated data, we demonstrate the capability of this technique to substantially reduce calibration error effects in the corrected atmospheric spectra and retrieved emissivities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2968044</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7191-4254</orcidid><orcidid>https://orcid.org/0000-0003-1341-1522</orcidid><orcidid>https://orcid.org/0000-0002-9741-8467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.642-648 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2020_2968044 |
source | DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Apertures Atmospheric correction Atmospheric measurements Atmospheric modeling Atmospheric models Atmospheric waves Calibration Computer simulation Emissivity Error correction Error reduction Errors Hyperspectral imaging Imaging techniques Infrared imaging Land surface temperature Military applications Pixels Radiance remote sensing Response functions Retrieval Roughness Spectra Spectral sensitivity Temperature Temperature measurement Wavelength |
title | Wavelength Calibration Correction Technique for Improved Emissivity Retrieval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelength%20Calibration%20Correction%20Technique%20for%20Improved%20Emissivity%20Retrieval&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Pieper,%20Michael&rft.date=2020&rft.volume=13&rft.spage=642&rft.epage=648&rft.pages=642-648&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2968044&rft_dat=%3Cproquest_cross%3E2359904317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2359904317&rft_id=info:pmid/&rft_ieee_id=8984742&rft_doaj_id=oai_doaj_org_article_b15ada9a830b42ba898b97a457f89dda&rfr_iscdi=true |